Cargando…

Introduction to computation and programming using Python : with application to understanding data /

This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including so...

Descripción completa

Detalles Bibliográficos
Clasificación:QA76.73 P9.8 G8.77 2016
Autor principal: Guttag, John V
Formato: Libro
Idioma:Inglés
Publicado: Cambridge, Massachusetts : Massachusetts Institute of Technology, ©2016.
Edición:2nd ed.
Temas:

MARC

LEADER 00000cam a2200000 4500
001 000157946
005 20161019122354.0
008 160429s2016 mau 001 0 eng
020 |a 9780262529624 
020 |a 0262529629 
040 |d YDXCP  |d BTCTA  |d BDX  |d MX-MxUAM 
041 |a eng 
043 |a n-us-ma 
050 4 |a QA76.73 P9.8  |b G8.77 2016 
082 0 0 |a 005.13/3 
090 |a QA76.73 P9.8  |b G8.77 2016 
100 1 |a Guttag, John V 
245 1 0 |a Introduction to computation and programming using Python :  |b with application to understanding data /  |c John V. Guttag. 
250 |a 2nd ed. 
260 |a Cambridge, Massachusetts :  |b Massachusetts Institute of Technology,  |c ©2016. 
300 |a xvii, 447 p. :  |b il. ;  |c 23 cm. 
504 |a Incluye referencias bibliográficas e índice 
520 1 |a This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics. 
650 0 |a Python (Computer program language)  |v Textbooks 
650 4 |a Python (Lenguaje de programación para computadoras)  |v Libros de texto 
650 0 |a Computer programming  |v Textbooks 
650 4 |a Programación de computadoras  |v Libros de texto 
905 |a LIBROS 
938 |a Comunidad  |c CBI 
949 |a Biblioteca UAM Iztapalapa  |b Colección General  |c QA76.73 P9.8 G8.77 2016