Cargando…

Fields and Galois theory /

This book provides a gentle introduction to Galois theory suitable for third- and fourth-year undergraduates and beginning graduates. The approach is unashamedly unhistorical: it uses the language and techniques of abstract algebra to express complex arguments in contemporary terms. Thus the insolub...

Descripción completa

Detalles Bibliográficos
Clasificación:QA214 H6.84
Autor principal: Howie, John M. (John Mackintosh) (autor)
Formato: Libro
Idioma:Inglés
Publicado: London : Springer, [2006].
Colección:Springer undergraduate mathematics series
Temas:

MARC

LEADER 00000aam a2200000 i 4500
001 000122236
005 20241106212546.6
007 ta
008 090204t20062006enk g 001 0 eng d
020 |a 1852339861  |q (rústica : papel libre de ácido) 
020 |a 9781852339869  |q (rústica : papel libre de ácido) 
040 |a UKM  |b spa  |e rda  |c UKM  |d XFF  |d OCLCO  |d OCLCQ  |d OCLCL  |d IG#  |d MX-MxUAM 
041 0 |a eng 
050 4 |a QA214  |b H6.84 
082 0 4 |a 512.74 
090 |a QA214  |b H6.84 
100 1 |a Howie, John M.  |q (John Mackintosh),  |e autor 
245 1 0 |a Fields and Galois theory /  |c John M. Howie. 
264 1 |a London :  |b Springer,  |c [2006]. 
264 4 |a ©2006. 
300 |a x, 227 páginas ;  |c 24 cm. 
336 |a texto  |b txt  |2 rdacontent 
337 |a sin medio  |b n  |2 rdamedia 
338 |a volumen  |b nc  |2 rdacarrier 
490 1 |a Springer undergraduate mathematics series 
504 |a Incluye referencias bibliográficas : (página [219]) e índice. 
505 0 0 |g 1.  |t Rings and fields. --  |g 2.  |t Integral domains and polynomials. --  |g 3.  |t Field extensions. --  |g 4.  |t Applications to geometry. --  |g 5.  |t Splitting fields. --  |g 6.  |t Finite fields. --  |g 7.  |t Galois group. --  |g 8.  |t Equations and groups. --  |g 9.  |t Some group theory. --  |g 10.  |t Groups and equations. --  |g 11.  |t Regular polygons. --  |g 12.  |t Solutions. 
520 1 |a This book provides a gentle introduction to Galois theory suitable for third- and fourth-year undergraduates and beginning graduates. The approach is unashamedly unhistorical: it uses the language and techniques of abstract algebra to express complex arguments in contemporary terms. Thus the insolubility of the quintic by radicals is linked to the fact that the alternating group of degree 5 is simple - which is assuredly not the way Galois would have expressed the connection. Topics covered include rings and fields, integral domains and polynomials, field extensions and splitting fields, applications to geometry, finite fields, the Galois group, equations. Group theory features in many of the arguments, and is fully explained in the text. Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided. 
538 |a Comunidad/CBI/Presupuesto Biblioteca 156.01.01.92/ICL20070100/IBI20070122/COBI. Fac-15033/[w249137/$666.31/w249138/$666.31/w249139/$666.31] 
650 0 |a Algebraic fields 
650 4 |a Campos algebraicos 
650 0 |a Galois theory 
650 4 |a Teoria de Galois 
830 0 |a Springer undergraduate mathematics series 
905 |a LIBROS 
938 |a Comunidad  |c CBI  |d Presupuesto Biblioteca 156.01.01.92  |e ICL20070100  |f IBI20070122 
949 |a Biblioteca UAM Iztapalapa  |b Colección General  |c QA214 H6.84