Cargando…

Bayesian model comparison /

This volume of Advances in econometrics is devoted to Bayesian model comparison. It reflects the recent progress in model building and evaluation that has been achieved in the Bayesian paradigm and provides new state-of-the-art techniques, methodology, and findings that should stimulate future resea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Poirier, Dale J. (Editor ), Jeliazkov, Ivan, 1973- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bingley : Emerald, 2014.
Edición:1st ed.
Colección:Advances in econometrics ; v. 34.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 ocn898061964
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |n|||||||||
008 141212s2014 enk ob 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d CDX  |d EBLCP  |d N$T  |d OCLCQ  |d OCLCO  |d YDXCP  |d OCLCF  |d TXM  |d NAM  |d DEBSZ  |d UWO  |d BWS  |d COO  |d OCLCQ  |d AGLDB  |d OCLCQ  |d MERUC  |d KIJ  |d AU@  |d OCLCQ  |d OTZ  |d STF  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 929015588  |a 1117807544  |a 1167274835 
020 |a 1322448264  |q (electronic bk.) 
020 |a 9781322448268  |q (electronic bk.) 
020 |a 9781784411848  |q (electronic bk.) 
020 |a 1784411841  |q (electronic bk.) 
020 |a 9781784411855 
020 |a 178441185X 
029 1 |a AU@  |b 000058360198 
029 1 |a DEBBG  |b BV042744236 
029 1 |a DEBSZ  |b 43186456X 
029 1 |a DEBSZ  |b 45634943X 
035 |a (OCoLC)898061964  |z (OCoLC)929015588  |z (OCoLC)1117807544  |z (OCoLC)1167274835 
037 |a 676108  |b MIL 
050 4 |a HB141.3 
072 7 |a BUS  |x 069000  |2 bisacsh 
072 7 |a BUS  |x 055000  |2 bisacsh 
072 7 |a KCH  |2 bicssc 
080 |a 339 
082 0 4 |a 330  |2 23 
049 |a UAMI 
245 0 0 |a Bayesian model comparison /  |c edited by Ivan Jeliazkov, Dale J. Poirier. 
250 |a 1st ed. 
260 |a Bingley :  |b Emerald,  |c 2014. 
300 |a 1 online resource (xi, 348 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in econometrics ;  |v Volume 34 
504 |a Includes bibliographical references. 
505 0 |a Adaptive sequential posterior simulators for massively parallel computing environments -- Model switching and model averaging in time-varying parameter regression models -- Assessing Bayesian model comparison in small samples -- Bayesian selection of systemic risk networks -- Parallel constrained Hamiltonian Monte Carlo for Bekk model comparison -- Factor selection in dynamic hedge fund replication models: a Bayesian approach -- Determining the proper specification for endogenous covariates in discrete data settings -- Variable selection in Bayesian models: using parameter estimation and non paramter estimation methods -- Intrinsic priors for objective Bayesian model selection -- Demand estimation with high-dimensional product characteristics -- Copula analysis of correlated counts. 
588 0 |a Print version record. 
520 |a This volume of Advances in econometrics is devoted to Bayesian model comparison. It reflects the recent progress in model building and evaluation that has been achieved in the Bayesian paradigm and provides new state-of-the-art techniques, methodology, and findings that should stimulate future research. The volume contains articles that should appeal to readers with computational, modeling, theoretical, and applied interests. Methodological issues include parallel computation, Hamiltonian Monte Carlo, dynamic model selection, small sample comparison of structural models, Bayesian thresholding methods in hierarchical graphical models, adaptive reversible jump MCMC, LASSO estimators, parameter expansion algorithms, the implementation of parameter and non-parameter-based approaches to variable selection, a survey of key results in objective Bayesian model selection methodology, and a careful look at the modeling of endogeneity in discrete data settings. Important contemporary questions are examined in applications in macroeconomics, finance, banking, labor economics, industrial organization, and transportation, among others, in which model uncertainty is a central consideration. 
590 |a Emerald Insight  |b Emerald All Book Titles 
650 0 |a Econometric models. 
650 0 |a Bayesian statistical decision theory. 
650 6 |a Modèles économétriques. 
650 6 |a Théorie de la décision bayésienne. 
650 7 |a Econometrics.  |2 bicssc 
650 7 |a BUSINESS & ECONOMICS  |x Economics  |x General.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Reference.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a Econometric models  |2 fast 
700 1 |a Poirier, Dale J.,  |e editor. 
700 1 |a Jeliazkov, Ivan,  |d 1973-  |e editor. 
776 1 |z 9781784411855 
830 0 |a Advances in econometrics ;  |v v. 34. 
856 4 0 |u https://emerald.uam.elogim.com/insight/publication/doi/10.1108/S0731-9053201434  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26799399 
938 |a Coutts Information Services  |b COUT  |n 30318452 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1887124 
938 |a EBSCOhost  |b EBSC  |n 924748 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30318452 
938 |a YBP Library Services  |b YANK  |n 11933823 
994 |a 92  |b IZTAP