Cargando…

Composition and Big Data /

"In a data-driven world, anything can be data. As the techniques and scale of data analysis advance, the need for a response from rhetoric and composition grows ever more pronounced. It is increasingly possible to examine thousands of documents and peer-review comments, labor-hours, and citatio...

Descripción completa

Detalles Bibliográficos
Otros Autores: Miller, Benjamin (Poet) (Editor ), Licastro, Amanda (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Pittsburgh, Pa. : University of Pittsburgh Press, [2021]
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_94705
003 MdBmJHUP
005 20230905053114.0
006 m o d
007 cr||||||||nn|n
008 210910s2021 pau o 00 0 eng d
010 |z  2021032860 
020 |a 9780822988199 
020 |z 9780822946748 
035 |a (OCoLC)1284980993 
040 |a MdBmJHUP  |c MdBmJHUP 
245 0 0 |a Composition and Big Data /   |c edited by Amanda Licastro and Benjamin Miller. 
264 1 |a Pittsburgh, Pa. :  |b University of Pittsburgh Press,  |c [2021] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 2021 
264 4 |c ©[2021] 
300 |a 1 online resource (272 pages):   |b illustrations ; 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Pittsburgh series in composition, literacy, and culture 
505 0 |a ‡t Learning to read again : introducing undergraduates to critical distant reading, machine analysis, and data in humanities writing / ‡r Trevor Hoag and Nicole Emmelhainz -- ‡t A corpus of first-year composition : exploring stylistic complexity in student writing / ‡r Chris Holcomb and Duncan A. Buell -- ‡t Expanding our repertoire : corpus analysis and the moves of synthesis / ‡r Alexis Teagarden -- ‡t Localizing big data : using computational methodologies to support programmatic assessment / ‡r David Reamer and Kyle McIntosh -- ‡t Big data as mirror : writing analytics and assessing assignment genres / ‡r Laura Aull -- ‡t Peer review in first-year composition and STEM courses : a large-scale corpus anaylsis of key writing terms / ‡r Chris M. Anson, Ian G. Anson, and Kendra Andrews -- ‡t Moving from categories to continuums : how corpus analysis tools reveal disciplinary tension in context / ‡r Kathryn Lambrecht -- ‡t From 1993 to 2017 : exploring "a giant cache of (disciplinary) lore" on WPA-L / ‡r Jenna Morton-Aiken -- ‡t Big-time disciplinarity : measuring professional consequences in candles and clocks / ‡r Kate Pantelides and Derek Mueller -- ‡t The boutique is open : data for writing studies / ‡r Cheryl E. Ball, Tarez Samra Graban, and Michelle Sidler -- ‡t Ethics, the IRBs, and big data research : toward disciplinary datasets in composition / ‡r Johanna Phelps -- ‡t Ethics in big data composition research : cybersecurity and algorithmic accountablitiy as best practices / ‡r Andrew Kulak-- ‡t Data do not speak for themselves : interpretation and model selection in unsupervised automated text analysis / ‡r Juho Paakkonen -- ‡t "Unsupervised learning" : reflections on a first foray into data-driven argument / ‡r Romeo Garcia -- ‡t Making do : working with missing and broken data / ‡r Jill Dahlman. 
520 |a "In a data-driven world, anything can be data. As the techniques and scale of data analysis advance, the need for a response from rhetoric and composition grows ever more pronounced. It is increasingly possible to examine thousands of documents and peer-review comments, labor-hours, and citation networks in composition courses and beyond. Composition and Big Data brings together a range of scholars, teachers, and administrators already working with big-data methods and datasets to kickstart a collective reckoning with the role that algorithmic and computational approaches can, or should, play in research and teaching in the field. Their work takes place in various contexts, including programmatic assessment, first-year pedagogy, stylistics, and learning transfer across the curriculum. From ethical reflections to database design, from corpus linguistics to quantitative autoethnography, these chapters implement and interpret the drive toward data in diverse ways"--  |c Provided by publisher. 
588 |a Description based on print version record. 
650 7 |a English language  |x Rhetoric  |x Study and teaching.  |2 fast  |0 (OCoLC)fst00911595 
650 7 |a English language  |x Rhetoric  |x Computer-assisted instruction.  |2 fast  |0 (OCoLC)fst00911585 
650 7 |a Digital humanities.  |2 fast  |0 (OCoLC)fst00963599 
650 7 |a Computational linguistics.  |2 fast  |0 (OCoLC)fst00871998 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 0 |a Digital humanities. 
650 0 |a Computational linguistics. 
650 0 |a Big data. 
650 0 |a Online data processing  |x Authorship  |x Study and teaching. 
650 0 |a English language  |x Rhetoric  |x Study and teaching. 
650 0 |a English language  |x Rhetoric  |x Computer-assisted instruction. 
655 7 |a Electronic books.   |2 local 
700 1 |a Miller, Benjamin  |c (Poet),  |e editor. 
700 1 |a Licastro, Amanda,  |e editor. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/94705/ 
945 |a Project MUSE - Custom Collection 
945 |a Project MUSE - 2021 Complete 
945 |a Project MUSE - 2021 Global Cultural Studies