Cargando…

A First Course in Scientific Computing : Symbolic, Graphic, and Numeric Modeling Using Maple, Java, Mathematica, and Fortran90

This book offers a new approach to introductory scientific computing. It aims to make students comfortable using computers to do science, to provide them with the computational tools and knowledge they need throughout their college careers and into their professional careers, and to show how all the...

Descripción completa

Detalles Bibliográficos
Autor principal: Landau, Rubin H.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2011.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_64848
003 MdBmJHUP
005 20230905050656.0
006 m o d
007 cr||||||||nn|n
008 111024s2011 nju o 00 0 eng d
020 |a 9781400841172 
020 |z 1400841178 
020 |z 9780691121833 
035 |a (OCoLC)1132688376 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Landau, Rubin H. 
245 1 2 |a A First Course in Scientific Computing :   |b Symbolic, Graphic, and Numeric Modeling Using Maple, Java, Mathematica, and Fortran90 
264 1 |a Princeton :  |b Princeton University Press,  |c 2011. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 2020 
264 4 |c ©2011. 
300 |a 1 online resource (512 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a 8.2 Math: Volume Integration. 
505 0 |a Cover; Title; Copyright; Contents; List of Figures; List of Tables; Preface; Chapter 1 Introduction; 1.1 Nature of Scientific Computing; 1.2 Talking to Computers; 1.3 Instructional Guide; 1.4 Exercises to Come Back To; PART 1: MAPLE (OR MATHEMATICA) BY DOING; Chapter 2 Getting Started with Maple; 2.1 Setting Up Your Work Space; 2.2 Maple's Problem-Solving Environment; 2.3 Maple's Command Structure; 2.4 Sums and sums; 2.5 Execution Groups; 2.6 Key Words and Concepts; 2.7 Supplementary Exercises; Chapter 3 Numbers, Expressions, Functions; Rocket Golf; 3.1 Problem: Viewing Rocket Golf. 
505 0 |a 3.2 Theory: Einstein's Special Relativity3.3 Math: Integer, Rational and Irrational Numbers; 3.4 CS: Floating-Point Numbers; 3.5 Complex Numbers; 3.6 Expressions; 3.7 Assignment Statements; 3.8 Equality (rhs, lhs); 3.9 Functions; 3.10 User-Defined Functions; 3.11 Reexpressing Answers; 3.12 CS: Overflow, Underflow, and Round-Off Error; 3.13 Solution: Viewing Rocket Golf; 3.14 Extension: Tachyons*; 3.15 Key Words and Concepts; 3.16 Supplementary Exercises; Chapter 4 Visualizing Data, Abstract Types; Electric Fields; 4.1 Why Visualization?; 4.2 Problem: Stable Points in Electric Fields. 
505 0 |a 4.3 Theory: Stability Criteria and Potential Energy4.4 Basic 2-D Plots: plot; 4.5 Compound (Abstract) Data Types: [Lists] and {Sets}; 4.6 3-D (Surface) Plots of Analytic Functions; 4.7 Solution: Dipole and Quadrupole Fields; 4.8 Exploration: The Tripole; 4.9 Extension: Yet More Plot Types*; 4.10 Visualizing Numerical Data; 4.11 Plotting a Matrix: matrixplot*; 4.12 Animations of Data*; 4.13 Key Words and Concepts; 4.14 Supplementary Exercises; Chapter 5 Solving Equations, Differentiation; Towers; 5.1 Problem: Maximum Height of a Tower; 5.2 Model: Block Stacking. 
505 0 |a 5.3 Math: Equations as Challenges5.4 Solving a Single Equation: solve, fsolve; 5.5 Solving Simultaneous Equations (Sets); 5.6 Solution to Tower Problem; 5.7 Differentiation: limit, diff, D; 5.8 Numerical Derivatives*; 5.9 Alternate Solution: Maximum Tower Height; 5.10 Assessment and Exploration; 5.11 Auxiliary Problem: Nonlinear Oscillations; 5.12 Key Words and Concepts; 5.13 Supplementary Exercises; Chapter 6 Integration; Power and Energy Usage (Also 14); 6.1 Problem: Relating Power and Energy Usage; 6.2 Empirical Models; 6.3 Theory: Power and Energy Definitions. 
505 0 |a 6.4 Maple: Tools for Integration6.5 Problem Solution: Energy from Power; 6.6 Key Words and Concepts; 6.7 Supplementary Exercises; Chapter 7 Matrices and Vectors; Rotation; 7.1 Problem: Rigid-Body Rotation; 7.2 Math: Vectors and Matrices; 7.3 Theory: Angular Momentum Dynamics; 7.4 Maple: Linear Algebra Tools; 7.5 Matrix Arithmetic and Operations; 7.6 Solution: Rotating Rigid Bodies; 7.7 Exploration: Principal Axes of Rotation*; 7.8 Key Words and Concepts; 7.9 Supplementary Exercises; Chapter 8 Searching, Programming; Dipsticks; 8.1 Problem: Volume of Liquid in Spherical Tanks. 
520 |a This book offers a new approach to introductory scientific computing. It aims to make students comfortable using computers to do science, to provide them with the computational tools and knowledge they need throughout their college careers and into their professional careers, and to show how all the pieces can work together. Rubin Landau introduces the requisite mathematics and computer science in the course of realistic problems, from energy use to the building of skyscrapers to projectile motion with drag. He is attentive to how each discipline uses its own language to describe the same conc. 
588 |a Description based on print version record. 
650 7 |a Science  |x Data processing.  |2 fast  |0 (OCoLC)fst01108207 
650 7 |a COMPUTERS  |x Computer Science.  |2 bisacsh 
650 7 |a SCIENCE  |x General.  |2 bisacsh 
650 6 |a Sciences  |x Informatique. 
650 0 |a Science  |x Data processing. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/64848/ 
945 |a Project MUSE - Custom Collection