Algebra in Context : Introductory Algebra from Origins to Applications /
"This book's unique approach to the teaching of mathematics lies in its use of history to provide a framework for understanding algebra and related fields. With Algebra in Context, students will soon discover why mathematics is such a crucial part not only of civilization but also of every...
Autores principales: | , |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Baltimore :
Johns Hopkins University Press,
2015.
|
Colección: | Book collections on Project MUSE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: pt. I Numeration Systems
- 1. Number Bases
- 1.1. Base 6
- 1.2. Base 4
- 2. Babylonian Number System
- 2.1. Cuneiform
- 2.2. Mathematical Texts
- 2.3. Number System
- 3. Egyptian and Roman Number Systems
- 3.1. Egyptian
- 3.1.1. History
- 3.1.2. Writing and Mathematics
- 3.1.3. Number System
- 3.2. Roman
- 3.2.1. History
- 3.2.2. Number System
- 4. Chinese Number System
- 4.1. History and Mathematics
- 4.2. Rod Numerals
- 5. Mayan Number System
- 5.1. Calendar
- 5.2. Codices
- 5.3. Number System
- 5.4. Native North Americans
- 6. Indo-Arabic Number System
- 6.1. India
- 6.1.1. History
- 6.1.2. Mathematics
- 6.2. Middle East
- 6.2.1. History
- 6.2.2. Mathematics
- 6.3. Number System
- 6.3.1. Whole Numbers
- 6.3.2. Fractions
- 7. Exercises
- pt. II Arithmetic Snapshots
- 8. Addition and Subtraction
- 9. Multiplication
- 9.1. Roman Abacus
- 9.2. Grating or Lattice Method
- 9.3. Ibn Labban and Chinese Counting Board
- 9.4. Egyptian Doubling Method
- 10. Division
- 10.1. Egyptian
- 10.2. Leonardo of Pisa
- 10.3. Galley or Scratch Method
- 11. Casting Out Nines
- 12. Finding Square Roots
- 12.1. Heron of Alexandria
- 12.2. Theon of Alexandria
- 12.3. Bakhshali Manuscript
- 12.4. Nicolas Chuquet
- 13. Exercises
- pt. III Foundations
- 14. Sets
- 14.1. Set Relations
- 14.2. Finding 2n
- 14.3. One-to-One Correspondence and Cardinality
- 15. Rational, Irrational, and Real Numbers
- 15.1. Commensurable and Incommensurable Magnitudes
- 15.2. Rational Numbers
- 15.3. Irrational Numbers
- 15.4. I Is Uncountably Infinite
- 15.5. card(Q), card(I), and card(R)
- 15.6. Transfinite Numbers
- 16. Logic
- 17. Higher Arithmetic
- 17.1. Early Greek Elementary Number Theory
- 17.1.1. Pythagoras
- 17.1.2. Euclid
- 17.1.3. Nicomachus and Diophantus
- 17.2. Even and Odd Numbers
- 17.3. Figurate Numbers
- 17.3.1. Triangular Numbers
- 17.3.2. Square Numbers
- 17.3.3. Rectangular Numbers
- 17.3.4. Other Figurate Numbers
- 17.4. Pythagorean Triples
- 17.5. Divisors, Common Factors, and Common Multiples
- 17.5.1. Factors and Multiples
- 17.5.2. Euclid's Algorithm
- 17.5.3. Multiples
- 17.6. Prime Numbers
- 17.6.1. Sieve of Eratosthenes
- 17.6.2. Fundamental Theorem of Arithmetic
- 17.6.3. Perfect Numbers
- 17.6.4. Friendly Numbers
- 18. Exercises
- pt. IV Solving Equations
- 19. Linear Problems
- 19.1. Review of Linear Equations
- 19.2. False Position
- 19.3. Double False Position
- 20. Quadratic Problems
- 20.1. Solving Quadratic Equations by Completing the Square
- 20.1.1. Babylonian
- 20.1.2. Arabic
- 20.1.3. Indian
- 20.1.4. Quadratic Formula
- 20.2. Polynomial Equations in One Variable
- 20.2.1. Powers
- 20.2.2. nth Roots
- 20.3. Continued Fractions
- 20.3.1. Finite Simple Continued Fractions
- 20.3.2. Infinite Simple Continued Fractions
- 20.3.3. Number #x1B;(Sz#x1B;(B
- 21. Cubic Equations and Complex Numbers
- 21.1. Complex Numbers
- 21.2. Solving Cubic Equations and the Cubic Formula
- 22. Polynomial Equations
- 22.1. Relation between Roots and Coefficients
- 22.2. Viete and Harriot
- 22.3. Zeros of a Polynomial
- 22.3.1. Factoring
- 22.3.2. Descartes's Rule of Signs
- 22.4. Fundamental Theorem of Algebra
- 23. Rule of Three
- 23.1. China
- 23.2. India
- 23.3. Medieval Europe
- 23.4. Rule of Three in False Position
- 23.5. Direct Variation, Inverse Variation, and Modeling
- 24. Logarithms
- 24.1. Logarithms Today
- 24.2. Properties of Logarithms
- 24.3. Bases of a Logarithm
- 24.3.1. Using a Calculator
- 24.3.2. Comparing Logarithms
- 24.4. Logarithm to the Base e and Applications
- 24.4.1. Compound Interest
- 24.4.2. Amortization
- 24.4.3. Exponential Growth and Decay
- 24.5. Logarithm to the Base 10 and Application to Earthquakes
- 25. Exercises.