|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
musev2_49475 |
003 |
MdBmJHUP |
005 |
20230905045135.0 |
006 |
m o d |
007 |
cr||||||||nn|n |
008 |
150415s2015 mdu o 00 0 eng d |
010 |
|
|
|z 2014954169
|
020 |
|
|
|a 9781421417295
|
020 |
|
|
|z 9781421417288
|
035 |
|
|
|a (OCoLC)968268190
|
040 |
|
|
|a MdBmJHUP
|c MdBmJHUP
|
100 |
1 |
|
|a Shell-Gellasch, Amy,
|e author.
|
245 |
1 |
0 |
|a Algebra in Context :
|b Introductory Algebra from Origins to Applications /
|c Amy Shell-Gellasch, Montgomery College, J.B. Thoo, Yuba College.
|
264 |
|
1 |
|a Baltimore :
|b Johns Hopkins University Press,
|c 2015.
|
264 |
|
3 |
|a Baltimore, Md. :
|b Project MUSE,
|c 2017
|
264 |
|
4 |
|c ©2015.
|
300 |
|
|
|a 1 online resource (552 pages):
|b illustrations, maps ;
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
0 |
|g Machine generated contents note:
|g pt. I
|t Numeration Systems --
|g 1.
|t Number Bases --
|g 1.1.
|t Base 6 --
|g 1.2.
|t Base 4 --
|g 2.
|t Babylonian Number System --
|g 2.1.
|t Cuneiform --
|g 2.2.
|t Mathematical Texts --
|g 2.3.
|t Number System --
|g 3.
|t Egyptian and Roman Number Systems --
|g 3.1.
|t Egyptian --
|g 3.1.1.
|t History --
|g 3.1.2.
|t Writing and Mathematics --
|g 3.1.3.
|t Number System --
|g 3.2.
|t Roman --
|g 3.2.1.
|t History --
|g 3.2.2.
|t Number System --
|g 4.
|t Chinese Number System --
|g 4.1.
|t History and Mathematics --
|g 4.2.
|t Rod Numerals --
|g 5.
|t Mayan Number System --
|g 5.1.
|t Calendar --
|g 5.2.
|t Codices --
|g 5.3.
|t Number System --
|g 5.4.
|t Native North Americans --
|g 6.
|t Indo-Arabic Number System --
|g 6.1.
|t India --
|g 6.1.1.
|t History --
|g 6.1.2.
|t Mathematics --
|g 6.2.
|t Middle East --
|g 6.2.1.
|t History --
|g 6.2.2.
|t Mathematics --
|g 6.3.
|t Number System --
|g 6.3.1.
|t Whole Numbers --
|g 6.3.2.
|t Fractions --
|g 7.
|t Exercises --
|g pt. II
|t Arithmetic Snapshots --
|g 8.
|t Addition and Subtraction --
|g 9.
|t Multiplication --
|g 9.1.
|t Roman Abacus --
|g 9.2.
|t Grating or Lattice Method --
|g 9.3.
|t Ibn Labban and Chinese Counting Board --
|g 9.4.
|t Egyptian Doubling Method --
|g 10.
|t Division --
|g 10.1.
|t Egyptian --
|g 10.2.
|t Leonardo of Pisa --
|g 10.3.
|t Galley or Scratch Method --
|g 11.
|t Casting Out Nines --
|g 12.
|t Finding Square Roots --
|g 12.1.
|t Heron of Alexandria --
|g 12.2.
|t Theon of Alexandria --
|g 12.3.
|t Bakhshali Manuscript --
|g 12.4.
|t Nicolas Chuquet --
|g 13.
|t Exercises --
|g pt. III
|t Foundations --
|g 14.
|t Sets --
|g 14.1.
|t Set Relations --
|g 14.2.
|t Finding 2n --
|g 14.3.
|t One-to-One Correspondence and Cardinality --
|g 15.
|t Rational, Irrational, and Real Numbers --
|g 15.1.
|t Commensurable and Incommensurable Magnitudes --
|g 15.2.
|t Rational Numbers --
|g 15.3.
|t Irrational Numbers --
|g 15.4.
|t I Is Uncountably Infinite --
|g 15.5.
|t card(Q), card(I), and card(R) --
|g 15.6.
|t Transfinite Numbers --
|g 16.
|t Logic --
|g 17.
|t Higher Arithmetic --
|g 17.1.
|t Early Greek Elementary Number Theory --
|g 17.1.1.
|t Pythagoras --
|g 17.1.2.
|t Euclid --
|g 17.1.3.
|t Nicomachus and Diophantus --
|g 17.2.
|t Even and Odd Numbers --
|g 17.3.
|t Figurate Numbers --
|g 17.3.1.
|t Triangular Numbers --
|g 17.3.2.
|t Square Numbers --
|g 17.3.3.
|t Rectangular Numbers --
|g 17.3.4.
|t Other Figurate Numbers --
|g 17.4.
|t Pythagorean Triples --
|g 17.5.
|t Divisors, Common Factors, and Common Multiples --
|g 17.5.1.
|t Factors and Multiples --
|g 17.5.2.
|t Euclid's Algorithm --
|g 17.5.3.
|t Multiples --
|g 17.6.
|t Prime Numbers --
|g 17.6.1.
|t Sieve of Eratosthenes --
|g 17.6.2.
|t Fundamental Theorem of Arithmetic --
|g 17.6.3.
|t Perfect Numbers --
|g 17.6.4.
|t Friendly Numbers --
|g 18.
|t Exercises --
|g pt. IV
|t Solving Equations --
|g 19.
|t Linear Problems --
|g 19.1.
|t Review of Linear Equations --
|g 19.2.
|t False Position --
|g 19.3.
|t Double False Position --
|g 20.
|t Quadratic Problems --
|g 20.1.
|t Solving Quadratic Equations by Completing the Square --
|g 20.1.1.
|t Babylonian --
|g 20.1.2.
|t Arabic --
|g 20.1.3.
|t Indian --
|g 20.1.4.
|t Quadratic Formula --
|g 20.2.
|t Polynomial Equations in One Variable --
|g 20.2.1.
|t Powers --
|g 20.2.2.
|t nth Roots --
|g 20.3.
|t Continued Fractions --
|g 20.3.1.
|t Finite Simple Continued Fractions --
|g 20.3.2.
|t Infinite Simple Continued Fractions --
|g 20.3.3.
|t Number #x1B;(Sz#x1B;(B --
|g 21.
|t Cubic Equations and Complex Numbers --
|g 21.1.
|t Complex Numbers --
|g 21.2.
|t Solving Cubic Equations and the Cubic Formula --
|g 22.
|t Polynomial Equations --
|g 22.1.
|t Relation between Roots and Coefficients --
|g 22.2.
|t Viete and Harriot --
|g 22.3.
|t Zeros of a Polynomial --
|g 22.3.1.
|t Factoring --
|g 22.3.2.
|t Descartes's Rule of Signs --
|g 22.4.
|t Fundamental Theorem of Algebra --
|g 23.
|t Rule of Three --
|g 23.1.
|t China --
|g 23.2.
|t India --
|g 23.3.
|t Medieval Europe --
|g 23.4.
|t Rule of Three in False Position --
|g 23.5.
|t Direct Variation, Inverse Variation, and Modeling --
|g 24.
|t Logarithms --
|g 24.1.
|t Logarithms Today --
|g 24.2.
|t Properties of Logarithms --
|g 24.3.
|t Bases of a Logarithm --
|g 24.3.1.
|t Using a Calculator --
|g 24.3.2.
|t Comparing Logarithms --
|g 24.4.
|t Logarithm to the Base e and Applications --
|g 24.4.1.
|t Compound Interest --
|g 24.4.2.
|t Amortization --
|g 24.4.3.
|t Exponential Growth and Decay --
|g 24.5.
|t Logarithm to the Base 10 and Application to Earthquakes --
|g 25.
|t Exercises.
|
520 |
|
|
|a "This book's unique approach to the teaching of mathematics lies in its use of history to provide a framework for understanding algebra and related fields. With Algebra in Context, students will soon discover why mathematics is such a crucial part not only of civilization but also of everyday life. Even those who have avoided mathematics for years will find the historical stories both inviting and gripping. The book's lessons begin with the creation and spread of number systems, from the mathematical development of early civilizations in Babylonia, Greece, China, Rome, Egypt, and Central America to the advancement of mathematics over time and the roles of famous figures such as Descartes and Leonardo of Pisa (Fibonacci). Before long, it becomes clear that the simple origins of algebra evolved into modern problem solving. Along the way, the language of mathematics becomes familiar, and students are gradually introduced to more challenging problems. Paced perfectly, Amy Shell-Gellasch and J.B. Thoo's chapters ease students from topic to topic until they reach the twenty-first century. By the end of Algebra in Context, students using this textbook will be comfortable with most algebra concepts, including: Different number bases -- Algebraic notation -- Methods of arithmetic calculation -- Real numbers -- Complex numbers -- Divisors -- Prime factorization -- Variation -- Factoring -- Solving linear equations -- False position -- Solving quadratic equations -- Solving cubic equations -- nth roots -- Set theory -- One-to-one correspondence -- Infinite sets -- Figurate numbers -- Logarithms -- Exponential growth -- Interest calculations."--Back cover.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
7 |
|a Algebra.
|2 fast
|0 (OCoLC)fst00804885
|
650 |
|
7 |
|a algebra.
|2 aat
|
650 |
|
6 |
|a Algebre
|x Histoire.
|
650 |
|
6 |
|a Algebre.
|
650 |
|
0 |
|a Algebra
|x History.
|
650 |
|
0 |
|a Algebra.
|
655 |
|
7 |
|a History.
|2 fast
|0 (OCoLC)fst01411628
|
655 |
|
7 |
|a Electronic books.
|2 local
|
700 |
1 |
|
|a Thoo, J. B.,
|e author.
|
710 |
2 |
|
|a Project Muse.
|e distributor
|
830 |
|
0 |
|a Book collections on Project MUSE.
|
856 |
4 |
0 |
|z Texto completo
|u https://projectmuse.uam.elogim.com/book/49475/
|
945 |
|
|
|a Project MUSE - Custom Collection
|