Cargando…

The Motion of a Surface by Its Mean Curvature. (MN-20) /

Kenneth Brakke studies in general dimensions a dynamic system of surfaces of no inertial mass driven by the force of surface tension and opposed by a frictional force proportional to velocity. He formulates his study in terms of varifold surfaces and uses the methods of geometric measure theory to d...

Descripción completa

Detalles Bibliográficos
Autor principal: Brakke, Kenneth A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : University of Tokyo Press, 1978.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_45179
003 MdBmJHUP
005 20230905044727.0
006 m o d
007 cr||||||||nn|n
008 150217t19781978nju o 00 0 eng d
020 |a 9781400867431 
020 |z 9780691639512 
020 |z 9780691082042 
020 |z 9780691611518 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Brakke, Kenneth A.,  |e author. 
245 1 4 |a The Motion of a Surface by Its Mean Curvature. (MN-20) /   |c by Kenneth A. Brakke. 
264 1 |a Princeton, New Jersey :  |b University of Tokyo Press,  |c 1978. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©1978. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton legacy library 
505 0 0 |t Frontmatter --  |t Table of Contents --  |t 1. Introduction --  |t 2. Preliminaries --  |t 3. Motion by mean curvature --  |t 4. Existence of varifolds moving by their mean curvature --  |t 5. Perpendicularity of mean curvature --  |t 6. Regularity --  |t Appendix A: Grain growth in metals --  |t Appendix B: Curves in R --  |t Appendix C: Curves of constant shape --  |t Appendix D: Density bounds and rectiflability --  |t Figure captions --  |t Figures --  |t References. 
520 |a Kenneth Brakke studies in general dimensions a dynamic system of surfaces of no inertial mass driven by the force of surface tension and opposed by a frictional force proportional to velocity. He formulates his study in terms of varifold surfaces and uses the methods of geometric measure theory to develop a mathematical description of the motion of a surface by its mean curvature. This mathematical description encompasses, among other subtleties, those of changing geometries and instantaneous mass losses. Originally published in 1978. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Surfaces.  |2 fast  |0 (OCoLC)fst01139256 
650 7 |a Geometric measure theory.  |2 fast  |0 (OCoLC)fst00940834 
650 7 |a Curvature.  |2 fast  |0 (OCoLC)fst00885436 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 6 |a Courbure. 
650 6 |a Surfaces (Mathematiques) 
650 6 |a Theorie de la mesure geometrique. 
650 0 |a Curvature. 
650 0 |a Surfaces. 
650 0 |a Geometric measure theory. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/45179/ 
945 |a Project MUSE - Custom Collection