Convexity in the Theory of Lattice Gases
In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Ar...
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton :
Princeton University Press,
2015.
|
Colección: | Book collections on Project MUSE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Frontmatter
- CONTENTS
- INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics
- I. Interactions
- II. Tangent Functionals and the Variational Principle
- III. DLR Equations and KMS Conditions
- IV. Decomposition of States
- V. Approximation by Tangent Functionals: Existence of Phase Transitions
- VI. The Gibbs Phase Rule
- APPENDIX [Alpha]. Hausdorff Measure and Dimension
- APPENDIX B. Classical Hard-Core Continuous Systems
- BIBLIOGRAPHY
- INDEX
- Backmatter.