Cargando…

Convexity in the Theory of Lattice Gases

In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Ar...

Descripción completa

Detalles Bibliográficos
Autor principal: Israel, Robert B.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2015.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_45167
003 MdBmJHUP
005 20230905044726.0
006 m o d
007 cr||||||||nn|n
008 150207s2015 nju o 00 0 eng d
020 |a 9781400868421 
020 |z 9780691635002 
020 |z 9780691082165 
020 |z 9780691606194 
020 |z 9780691082097 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Israel, Robert B. 
245 1 0 |a Convexity in the Theory of Lattice Gases 
264 1 |a Princeton :  |b Princeton University Press,  |c 2015. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2015. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton Series in Physics 
500 |a Contents. 
505 0 0 |t Frontmatter --  |t CONTENTS --  |t INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics --  |t I. Interactions --  |t II. Tangent Functionals and the Variational Principle --  |t III. DLR Equations and KMS Conditions --  |t IV. Decomposition of States --  |t V. Approximation by Tangent Functionals: Existence of Phase Transitions --  |t VI. The Gibbs Phase Rule --  |t APPENDIX [Alpha]. Hausdorff Measure and Dimension --  |t APPENDIX B. Classical Hard-Core Continuous Systems --  |t BIBLIOGRAPHY --  |t INDEX --  |t Backmatter. 
520 |a In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Statistical thermodynamics.  |2 fast  |0 (OCoLC)fst01132092 
650 7 |a Statistical mechanics.  |2 fast  |0 (OCoLC)fst01132070 
650 7 |a Lattice gas.  |2 fast  |0 (OCoLC)fst00993419 
650 7 |a Convex domains.  |2 fast  |0 (OCoLC)fst00877259 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Energy.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 6 |a Thermodynamique statistique. 
650 6 |a Mecanique statistique. 
650 6 |a Algebres convexes. 
650 6 |a Gaz reticulaires. 
650 4 |a Physik. 
650 4 |a Physics. 
650 4 |a Physics, other. 
650 4 |a Natural Sciences. 
650 0 |a Statistical thermodynamics. 
650 0 |a Statistical mechanics. 
650 0 |a Convex domains. 
650 0 |a Lattice gas. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
880 0 0 |6 505-00/(S  |t Frontmatter --  |t CONTENTS --  |t INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics --  |t I. Interactions --  |t II. Tangent Functionals and the Variational Principle --  |t III. DLR Equations and KMS Conditions --  |t IV. Decomposition of States --  |t V. Approximation by Tangent Functionals: Existence of Phase Transitions --  |t VI. The Gibbs Phase Rule --  |t APPENDIX Α. Hausdorff Measure and Dimension --  |t APPENDIX B. Classical Hard-Core Continuous Systems --  |t BIBLIOGRAPHY --  |t INDEX --  |t Backmatter. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/45167/ 
945 |a Project MUSE - Custom Collection