Cargando…

Mathematical Tools for Understanding Infectious Disease Dynamics /

"Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment o...

Descripción completa

Detalles Bibliográficos
Autor principal: Diekmann, O. (Autor)
Otros Autores: Britton, Tom (Editor ), Heesterbeek, Hans, 1960- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2013.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_41997
003 MdBmJHUP
005 20230905044411.0
006 m o d
007 cr||||||||nn|n
008 121009s2013 nju o 00 0 eng d
020 |a 9781400845620 
020 |z 9780691155395 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Diekmann, O.,  |e author. 
245 1 0 |a Mathematical Tools for Understanding Infectious Disease Dynamics /   |c Odo Diekmann, Hans Heesterbeek, and Tom Britton. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2013. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2013. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton series in theoretical and computational biology 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t Part I. The bare bones: Basic issues in the simplest context --  |t Part II. Structured populations --  |t Part III. Case studies on inference --  |t Part IV. Elaborations --  |t Bibliography --  |t Index 
520 |a "Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout "--  |c Provided by publisher. 
588 |a Description based on print version record. 
650 7 |a Epidemiology  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00914096 
650 7 |a Communicable diseases  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00869903 
650 7 |a MEDICAL  |x Health Risk Assessment.  |2 bisacsh 
650 7 |a MEDICAL  |x Epidemiology.  |2 bisacsh 
650 7 |a MEDICAL  |x Infectious Diseases.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Biology  |x General.  |2 bisacsh 
650 7 |a mathematical models.  |2 aat 
650 6 |a Maladies infectieuses. 
650 6 |a Modeles mathematiques. 
650 6 |a Épidemiologie. 
650 6 |a Maladies infectieuses  |x Modeles mathematiques. 
650 6 |a Épidemiologie  |x Modeles mathematiques. 
650 6 |a Épidemiologie  |x Modeles mathematiques  |v Congres. 
650 2 |a Communicable Diseases 
650 2 |a Models, Theoretical 
650 2 |a Epidemiology 
650 0 |a Communicable diseases. 
650 0 |a Mathematical models. 
650 0 |a Epidemiology. 
650 0 |a Communicable diseases  |x Mathematical models. 
650 0 |a Epidemiology  |x Mathematical models. 
650 0 |a Epidemiology  |x Mathematical models  |v Congresses. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Electronic books.   |2 local 
700 1 |a Britton, Tom,  |e editor. 
700 1 |a Heesterbeek, Hans,  |d 1960-  |e editor. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/41997/ 
945 |a Project MUSE - Custom Collection