Cargando…

Convex Analysis : (PMS-28) /

Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differe...

Descripción completa

Detalles Bibliográficos
Autor principal: Rockafellar, R. Tyrrell, 1935- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 1997, 1970.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title; Copright; Dedication; Preface; Contents; Introductory Remarks: a Guide for the Reader ; PART I: BASIC CONCEPTS; 1. Affine Sets; 2. Convex Sets and Cones ; 3. The Algebra of Convex Sets; 4. Convex Functions; 5. Functional Operations; PART II: TOPOLOGICAL PROPERTIES; 6. Relative Interiors of Convex Sets; 7. Closures of Convex Functions; 8. Recession Cones and Unboundedness; 9. Some Closedness Criteria; 10. Continuity of Convex Functions; PART III: DUALITY CORRESPONDENCES; 11. Separation Theorems; 12. Conjugates of Convex Functions; 13. Support Functions.
  • 14. Polars of Convex Sets15. Polars of Convex Functions; 16. DualOperations; PART IV: REPRESENTATION AND INEQUALITIES; 17. Caratheodory's Theorem; 18. Extreme Points and Faces of Convex Sets; 19. Polyhedral Convex Sets and Functions; 20. Some Applications of Polyhedral Convexity; 21. Helly's Theorem and Systems of Inequalities; 22. Linear Inequalities; PART V: DIFFERENTIAL THEORY; 23. Directional Derivatives and Subgradients ; 24. Differential Continuity and Monotonicity.; 25. Differentiability of Convex Functions; 26. The Legendre Transformation.
  • PART VI: CONSTRAINED EXTREMUM PROBLEMS27. The Minimum of a Convex Function; 28. Ordinary Convex Programs and Lagrange Multipliers; 29. Bifunctions and Generalized Convex Programs; 30. Adjoint Bifunctions and Dual Programs; 31. Fenchel's Duality Theorem; 32. The Maximum of a Convex Function ; PART VII: SADDLE-FUNCTIONS AND MINIMAX THEORY; 33. Saddle-Functions; 34. Closures and Equivalence Classes; 35. Continuity and Differentiability of Saddle-functions; 36. Minimax Problems; 37. Conjugate Saddle-functions and Minimax Theorems; PART VIII: CONVEX ALGEBRA.
  • 38. The Algebra of Bifunctions39. Convex Processes; Comments and References ; Bibliography; Index.