Cargando…

Convex Analysis : (PMS-28) /

Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differe...

Descripción completa

Detalles Bibliográficos
Autor principal: Rockafellar, R. Tyrrell, 1935- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 1997, 1970.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_41639
003 MdBmJHUP
005 20230905044350.0
006 m o d
007 cr||||||||nn|n
008 150401t19971970nju o 00 0 eng d
020 |a 9781400873173 
020 |z 9780691015866 
020 |z 9780691080697 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Rockafellar, R. Tyrrell,  |d 1935-  |e author. 
245 1 0 |a Convex Analysis :   |b (PMS-28) /   |c by R. Tyrrell Rockafellar. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 1997, 1970. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©1997, 1970. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton paperbacks 
490 0 |a Princeton landmarks in mathematics and physics 
500 |a "First published in the Princeton Mathematical Series in 1970"--Title page verso 
505 0 |a Cover; Title; Copright; Dedication; Preface; Contents; Introductory Remarks: a Guide for the Reader ; PART I: BASIC CONCEPTS; 1. Affine Sets; 2. Convex Sets and Cones ; 3. The Algebra of Convex Sets; 4. Convex Functions; 5. Functional Operations; PART II: TOPOLOGICAL PROPERTIES; 6. Relative Interiors of Convex Sets; 7. Closures of Convex Functions; 8. Recession Cones and Unboundedness; 9. Some Closedness Criteria; 10. Continuity of Convex Functions; PART III: DUALITY CORRESPONDENCES; 11. Separation Theorems; 12. Conjugates of Convex Functions; 13. Support Functions. 
505 0 |a 14. Polars of Convex Sets15. Polars of Convex Functions; 16. DualOperations; PART IV: REPRESENTATION AND INEQUALITIES; 17. Caratheodory's Theorem; 18. Extreme Points and Faces of Convex Sets; 19. Polyhedral Convex Sets and Functions; 20. Some Applications of Polyhedral Convexity; 21. Helly's Theorem and Systems of Inequalities; 22. Linear Inequalities; PART V: DIFFERENTIAL THEORY; 23. Directional Derivatives and Subgradients ; 24. Differential Continuity and Monotonicity.; 25. Differentiability of Convex Functions; 26. The Legendre Transformation. 
505 0 |a PART VI: CONSTRAINED EXTREMUM PROBLEMS27. The Minimum of a Convex Function; 28. Ordinary Convex Programs and Lagrange Multipliers; 29. Bifunctions and Generalized Convex Programs; 30. Adjoint Bifunctions and Dual Programs; 31. Fenchel's Duality Theorem; 32. The Maximum of a Convex Function ; PART VII: SADDLE-FUNCTIONS AND MINIMAX THEORY; 33. Saddle-Functions; 34. Closures and Equivalence Classes; 35. Continuity and Differentiability of Saddle-functions; 36. Minimax Problems; 37. Conjugate Saddle-functions and Minimax Theorems; PART VIII: CONVEX ALGEBRA. 
505 0 |a 38. The Algebra of Bifunctions39. Convex Processes; Comments and References ; Bibliography; Index. 
520 |a Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle-functions. 
546 |a In English. 
588 |a Description based on print version record. 
650 0 7 |a Konvexe Analysis.  |2 swd 
650 7 |a Konvexe Analysis  |2 gnd 
650 7 |a Mathematical analysis.  |2 fast  |0 (OCoLC)fst01012068 
650 7 |a Convex functions.  |2 fast  |0 (OCoLC)fst00877260 
650 7 |a Convex domains.  |2 fast  |0 (OCoLC)fst00877259 
650 7 |a MATHEMATICS  |x Optimization.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 6 |a Analyse mathematique. 
650 6 |a Fonctions convexes. 
650 6 |a Algebres convexes. 
650 0 |a Mathematical analysis. 
650 0 |a Convex functions. 
650 0 |a Convex domains. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/41639/ 
945 |a Project MUSE - Custom Collection