Cargando…

Across the Board : The Mathematics of Chessboard Problems /

Across the Board is the definitive work on chessboard problems. It is not simply about chess but the chessboard itself--that simple grid of squares so common to games around the world. And, more importantly, the fascinating mathematics behind it. From the Knight's Tour Problem and Queens Domina...

Descripción completa

Detalles Bibliográficos
Autor principal: Watkins, John J. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2004.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_41633
003 MdBmJHUP
005 20230905044349.0
006 m o d
007 cr||||||||nn|n
008 030821s2004 nju o 00 0 eng d
020 |a 9781400840922 
020 |z 9780691130620 
020 |z 9780691115030 
020 |z 9780691154985 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Watkins, John J.,  |e author. 
245 1 0 |a Across the Board :   |b The Mathematics of Chessboard Problems /   |c John J. Watkins. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2004. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2004. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Contents; Preface; Chapter One: Introduction; Chapter Two: Knight's Tours; Chapter Three: The Knight's Tour Problem; Chapter Four: Magic Squares; Chapter Five: The Torus and the Cylinder; Chapter Six: The Klein Bottle and Other Variations; Chapter Seven: Domination; Chapter Eight: Queens Domination; Chapter Nine: Domination on Other Surfaces; Chapter Ten: Independence; Chapter Eleven: Other Surfaces, Other Variations; Chapter Twelve: Eulerian Squares; Chapter Thirteen: Polyominoes; References; Index 
520 |a Across the Board is the definitive work on chessboard problems. It is not simply about chess but the chessboard itself--that simple grid of squares so common to games around the world. And, more importantly, the fascinating mathematics behind it. From the Knight's Tour Problem and Queens Domination to their many variations, John Watkins surveys all the well-known problems in this surprisingly fertile area of recreational mathematics. Can a knight follow a path that covers every square once, ending on the starting square? How many queens are needed so that every square is targeted or. 
588 |a Description based on print version record. 
650 7 |a Mathematical recreations.  |2 fast  |0 (OCoLC)fst01012120 
650 7 |a Chess.  |2 fast  |0 (OCoLC)fst00853777 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Recreations & Games.  |2 bisacsh 
650 7 |a GAMES  |x Sudoku.  |2 bisacsh 
650 7 |a chess.  |2 aat 
650 6 |a Échecs (Jeu) 
650 6 |a Jeux mathematiques. 
650 0 |a Chess. 
650 0 |a Mathematical recreations. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/41633/ 
945 |a Project MUSE - Custom Collection