Cargando…

Magical Mathematics : The Mathematical Ideas That Animate Great Magic Tricks /

"Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up...

Descripción completa

Detalles Bibliográficos
Autor principal: Diaconis, Persi
Otros Autores: Graham, Ronald L., 1935-2020
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2011]
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_36359
003 MdBmJHUP
005 20230905043825.0
006 m o d
007 cr||||||||nn|n
008 111017t20112011nju o 00 0 eng d
020 |a 9781400839384 
020 |z 9780691169774 
020 |z 9780691151649 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Diaconis, Persi. 
245 1 0 |a Magical Mathematics :   |b The Mathematical Ideas That Animate Great Magic Tricks /   |c Persi Diaconis, Ron Graham ; with a foreword by Martin Gardner. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2011] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©[2011] 
300 |a 1 online resource:   |b color illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Contents; Foreword; Preface; 1 MATHEMATICS IN THE AIR; 2 IN CYCLES; 3 IS THIS STUFF ACTUALLY GOOD FOR ANYTHING?; 4 UNIVERSAL CYCLES; 5 FROM THE GILBREATH PRINCIPLE TO THE MANDELBROT SET; 6 NEAT SHUFFLES; 7 THE OLDEST MATHEMATICAL ENTERTAINMENT?; 8 MAGIC IN THE BOOK OF CHANGES; 9 WHAT GOES UP MUST COME DOWN; 10 STARS OF MATHEMATICAL MAGIC (AND SOME OF THE BEST TRICKS IN THE BOOK); 11 GOING FURTHER; 12 ON SECRETS; Notes; Index. 
520 |a "Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge. For example, the Gilbreath principle--a fantastic effect where the cards remain in control despite being shuffled--is found to share an intimate connection with the Mandelbrot set. Other card tricks link to the mathematical secrets of combinatorics, graph theory, number theory, topology, the Riemann hypothesis, and even Fermat's last theorem. Diaconis and Graham are mathematicians as well as skilled performers with decades of professional experience between them. In this book they share a wealth of conjuring lore, including some closely guarded secrets of legendary magicians. Magical Mathematics covers the mathematics of juggling and shows how the I Ching connects to the history of probability and magic tricks both old and new. It tells the stories--and reveals the best tricks--of the eccentric and brilliant inventors of mathematical magic. Magical Mathematics exposes old gambling secrets through the mathematics of shuffling cards, explains the classic street-gambling scam of three-card monte, traces the history of mathematical magic back to the thirteenth century and the oldest mathematical trick--and much more"--  |c Provided by publisher 
586 |a Association of American Publishers PROSE Award, 2012. 
586 |a Mathematical Association of America Euler Prize, 2013. 
588 |a Description based on print version record. 
650 7 |a GAMES  |x Magic.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Recreations & Games.  |2 bisacsh 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 6 |a Tours de cartes  |x Mathematiques. 
650 0 |a Card tricks  |x Mathematics. 
655 7 |a Electronic books.   |2 local 
700 1 |a Graham, Ronald L.,  |d 1935-2020. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/36359/ 
945 |a Project MUSE - Custom Collection