Cargando…

Multi-parameter Singular Integrals. (AM-189), Volume I /

This book develops a new theory of multi-parameter singular integrals associated with Carnot-Caratheodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-par...

Descripción completa

Detalles Bibliográficos
Autor principal: Street, Brian, 1981- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2014]
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_35383
003 MdBmJHUP
005 20230905043725.0
006 m o d
007 cr||||||||nn|n
008 140611t20142014nju o 00 0 eng d
020 |a 9781400852758 
020 |z 9780691162515 
020 |z 9780691162522 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Street, Brian,  |d 1981-  |e author. 
245 1 0 |a Multi-parameter Singular Integrals. (AM-189), Volume I /   |c Brian Street. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2014] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©[2014] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v number 189 
505 0 |a Cover; Contents; Preface; 1 The Calderón-Zygmund Theory I: Ellipticity; 1.1 Non-homogeneous kernels; 1.2 Non-translation invariant operators; 1.3 Pseudodifferential operators; 1.4 Elliptic equations; 1.5 Further reading and references; 2 The Calderón-Zygmund Theory II: Maximal Hypoellipticity; 2.1 Vector fields with formal degrees; 2.2 The Frobenius theorem; 2.2.1 Scaling techniques; 2.2.2 Ideas in the proof; 2.3 Vector fields with formal degrees revisited; 2.4 Maximal hypoellipticity; 2.4.1 Subellipticity; 2.4.2 Scale invariance; 2.5 Smooth metrics and bump functions; 2.6 The sub-Laplacian. 
505 0 |a 2.7 The algebra of singular integrals2.7.1 More on the cancellation condition; 2.8 The topology; 2.9 The maximal function; 2.10 Non-isotropic Sobolev spaces; 2.11 Maximal hypoellipticity revisited; 2.11.1 The Kohn Laplacian; 2.12 Exponential maps; 2.13 Nilpotent Lie groups; 2.14 Pseudodifferential operators; 2.15 Beyond Hörmander's condition; 2.15.1 More on the assumptions; 2.15.2 When the vector fields span; 2.15.3 When the vector fields do not span; 2.15.4 A Littlewood-Paley theory; 2.15.5 The role of real analyticity; 2.16 Further reading and references. 
505 0 |a 3 Multi-parameter Carnot-Caratheodory Geometry3.1 Assumptions on the vector fields; 3.2 Some preliminary estimates; 3.3 The maximal function; 3.4 A Littlewood-Paley theory; 3.5 Further reading and references; 4 Multi-parameter Singular Integrals I: Examples; 4.1 The product theory of singular integrals; 4.1.1 Non-isotropic Sobolev spaces; 4.1.2 Further reading and references; 4.2 Flag kernels on graded groups and beyond; 4.2.1 Non-isotropic Sobolev spaces; 4.2.2 Further reading and references; 4.3 Left and right invariant operators; 4.3.1 An example of Kohn. 
505 0 |a 4.3.2 Further reading and references4.4 Carnot-Caratheodory and Euclidean geometries; 4.4.1 The [omitted]-Neumann problem; 4.4.2 Further reading and references; 5 Multi-parameter Singular Integrals II: General Theory; 5.1 The main results; 5.1.1 Non-isotropic Sobolev spaces; 5.1.2 Multi-parameter pseudodifferential operators; 5.1.3 Adding parameters; 5.1.4 Pseudolocality; 5.2 Schwartz space and product kernels; 5.3 Pseudodifferential operators and A[sub(3)] ⁶"A[sub(4)]; 5.4 Elementary operators and A[sub(4)] ⁶"A[sub(3)]; 5.5 A[sub(4)] ⁶"A[sub(2)] ⁶"A[sub(1)]; 5.6 A[sub(1)] ⁶"A[sub(4)]. 
505 0 |a 5.7 The topology5.8 Non-isotropic Sobolev spaces; 5.9 Adding parameters; 5.10 Pseudolocality; 5.10.1 Operators on a compact manifold; 5.11 Examples; 5.11.1 Euclidean vector fields; 5.11.2 Hörmander vector fields and other geometries; 5.11.3 Carnot-Caratheodory and Euclidean geometries; 5.11.4 An Example of Kohn; 5.11.5 The product theory of singular integrals; 5.12 Some generalizations; 5.13 Closing remarks; A Functional Analysis; A.1 Locally convex topological vector spaces; A.1.1 Duals and distributions; A.2 Tensor Products; B Three Results from Calculus; B.1 Exponential of vector fields. 
520 |a This book develops a new theory of multi-parameter singular integrals associated with Carnot-Caratheodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Caratheodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Transformations (Mathematics)  |2 fast  |0 (OCoLC)fst01154653 
650 7 |a Singular integrals.  |2 fast  |0 (OCoLC)fst01119499 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 6 |a Integrales singulieres. 
650 0 |a Transformations (Mathematics) 
650 0 |a Singular integrals. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/35383/ 
945 |a Project MUSE - Custom Collection