|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
musev2_35383 |
003 |
MdBmJHUP |
005 |
20230905043725.0 |
006 |
m o d |
007 |
cr||||||||nn|n |
008 |
140611t20142014nju o 00 0 eng d |
020 |
|
|
|a 9781400852758
|
020 |
|
|
|z 9780691162515
|
020 |
|
|
|z 9780691162522
|
040 |
|
|
|a MdBmJHUP
|c MdBmJHUP
|
100 |
1 |
|
|a Street, Brian,
|d 1981-
|e author.
|
245 |
1 |
0 |
|a Multi-parameter Singular Integrals. (AM-189), Volume I /
|c Brian Street.
|
264 |
|
1 |
|a Princeton :
|b Princeton University Press,
|c [2014]
|
264 |
|
3 |
|a Baltimore, Md. :
|b Project MUSE,
|c 0000
|
264 |
|
4 |
|c ©[2014]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Annals of mathematics studies ;
|v number 189
|
505 |
0 |
|
|a Cover; Contents; Preface; 1 The Calderón-Zygmund Theory I: Ellipticity; 1.1 Non-homogeneous kernels; 1.2 Non-translation invariant operators; 1.3 Pseudodifferential operators; 1.4 Elliptic equations; 1.5 Further reading and references; 2 The Calderón-Zygmund Theory II: Maximal Hypoellipticity; 2.1 Vector fields with formal degrees; 2.2 The Frobenius theorem; 2.2.1 Scaling techniques; 2.2.2 Ideas in the proof; 2.3 Vector fields with formal degrees revisited; 2.4 Maximal hypoellipticity; 2.4.1 Subellipticity; 2.4.2 Scale invariance; 2.5 Smooth metrics and bump functions; 2.6 The sub-Laplacian.
|
505 |
0 |
|
|a 2.7 The algebra of singular integrals2.7.1 More on the cancellation condition; 2.8 The topology; 2.9 The maximal function; 2.10 Non-isotropic Sobolev spaces; 2.11 Maximal hypoellipticity revisited; 2.11.1 The Kohn Laplacian; 2.12 Exponential maps; 2.13 Nilpotent Lie groups; 2.14 Pseudodifferential operators; 2.15 Beyond Hörmander's condition; 2.15.1 More on the assumptions; 2.15.2 When the vector fields span; 2.15.3 When the vector fields do not span; 2.15.4 A Littlewood-Paley theory; 2.15.5 The role of real analyticity; 2.16 Further reading and references.
|
505 |
0 |
|
|a 3 Multi-parameter Carnot-Caratheodory Geometry3.1 Assumptions on the vector fields; 3.2 Some preliminary estimates; 3.3 The maximal function; 3.4 A Littlewood-Paley theory; 3.5 Further reading and references; 4 Multi-parameter Singular Integrals I: Examples; 4.1 The product theory of singular integrals; 4.1.1 Non-isotropic Sobolev spaces; 4.1.2 Further reading and references; 4.2 Flag kernels on graded groups and beyond; 4.2.1 Non-isotropic Sobolev spaces; 4.2.2 Further reading and references; 4.3 Left and right invariant operators; 4.3.1 An example of Kohn.
|
505 |
0 |
|
|a 4.3.2 Further reading and references4.4 Carnot-Caratheodory and Euclidean geometries; 4.4.1 The [omitted]-Neumann problem; 4.4.2 Further reading and references; 5 Multi-parameter Singular Integrals II: General Theory; 5.1 The main results; 5.1.1 Non-isotropic Sobolev spaces; 5.1.2 Multi-parameter pseudodifferential operators; 5.1.3 Adding parameters; 5.1.4 Pseudolocality; 5.2 Schwartz space and product kernels; 5.3 Pseudodifferential operators and A[sub(3)] ⁶"A[sub(4)]; 5.4 Elementary operators and A[sub(4)] ⁶"A[sub(3)]; 5.5 A[sub(4)] ⁶"A[sub(2)] ⁶"A[sub(1)]; 5.6 A[sub(1)] ⁶"A[sub(4)].
|
505 |
0 |
|
|a 5.7 The topology5.8 Non-isotropic Sobolev spaces; 5.9 Adding parameters; 5.10 Pseudolocality; 5.10.1 Operators on a compact manifold; 5.11 Examples; 5.11.1 Euclidean vector fields; 5.11.2 Hörmander vector fields and other geometries; 5.11.3 Carnot-Caratheodory and Euclidean geometries; 5.11.4 An Example of Kohn; 5.11.5 The product theory of singular integrals; 5.12 Some generalizations; 5.13 Closing remarks; A Functional Analysis; A.1 Locally convex topological vector spaces; A.1.1 Duals and distributions; A.2 Tensor Products; B Three Results from Calculus; B.1 Exponential of vector fields.
|
520 |
|
|
|a This book develops a new theory of multi-parameter singular integrals associated with Carnot-Caratheodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Caratheodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples.
|
546 |
|
|
|a In English.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
7 |
|a Transformations (Mathematics)
|2 fast
|0 (OCoLC)fst01154653
|
650 |
|
7 |
|a Singular integrals.
|2 fast
|0 (OCoLC)fst01119499
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
6 |
|a Integrales singulieres.
|
650 |
|
0 |
|a Transformations (Mathematics)
|
650 |
|
0 |
|a Singular integrals.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
710 |
2 |
|
|a Project Muse.
|e distributor
|
830 |
|
0 |
|a Book collections on Project MUSE.
|
856 |
4 |
0 |
|z Texto completo
|u https://projectmuse.uam.elogim.com/book/35383/
|
945 |
|
|
|a Project MUSE - Custom Collection
|