The Real Fatou Conjecture. (AM-144), Volume 144 /
The real Fatou conjecture /
In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it c...
Autores principales: | , |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton, N.J. :
Princeton University Press,
1998.
|
Colección: | Book collections on Project MUSE.
|
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | musev2_35369 | ||
003 | MdBmJHUP | ||
005 | 20230905043724.0 | ||
006 | m o d | ||
007 | cr||||||||nn|n | ||
008 | 140816s1998 nju o 00 0 eng d | ||
020 | |a 9781400865185 | ||
020 | |z 9780691002583 | ||
020 | |z 9780691002576 | ||
040 | |a MdBmJHUP |c MdBmJHUP | ||
100 | 1 | |a Graczyk, Jacek. | |
245 | 1 | 4 | |a The Real Fatou Conjecture. (AM-144), Volume 144 / |c by Jacek Graczyk and Grzegorz Świa̧tek. |
264 | 1 | |a Princeton, N.J. : |b Princeton University Press, |c 1998. | |
264 | 3 | |a Baltimore, Md. : |b Project MUSE, |c 0000 | |
264 | 4 | |c ©1998. | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of mathematics studies ; |v number144 | |
505 | 0 | 0 | |t Frontmatter -- |t Contents -- |t Chapter 1. Review of Concepts -- |t Chapter 2. Quasiconformal Gluing -- |t Chapter 3. Polynomial-Like Property -- |t Chapter 4. Linear Growth of Moduli -- |t Chapter 5. Quasi conformal Techniques -- |t Bibliography -- |t Index. |
520 | |a In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students | ||
546 | |a In English. | ||
588 | |a Description based on print version record. | ||
650 | 7 | |a Polynomials. |2 fast |0 (OCoLC)fst01070715 | |
650 | 7 | |a Mappings (Mathematics) |2 fast |0 (OCoLC)fst01008724 | |
650 | 7 | |a Geodesics (Mathematics) |2 fast |0 (OCoLC)fst00940368 | |
650 | 7 | |a MATHEMATICS |x Complex Analysis. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 6 | |a Polynômes. | |
650 | 6 | |a Applications (Mathematiques) | |
650 | 6 | |a Geodesiques (Mathematiques) | |
650 | 4 | |a Mathematik. | |
650 | 0 | |a Polynomials. | |
650 | 0 | |a Mappings (Mathematics) | |
650 | 0 | |a Geodesics (Mathematics) | |
655 | 7 | |a Electronic books. |2 local | |
700 | 1 | |a Świa̧tek, Grzegorz, |d 1964- |e author. | |
710 | 2 | |a Project Muse. |e distributor | |
830 | 0 | |a Book collections on Project MUSE. | |
880 | 1 | 4 | |6 245-00/(Q |a The real Fatou conjecture / |c by Jacek Graczyk and Grzegorz {acute}Swiѕtek. |
856 | 4 | 0 | |z Texto completo |u https://projectmuse.uam.elogim.com/book/35369/ |
945 | |a Project MUSE - Custom Collection |