Cargando…

The Real Fatou Conjecture. (AM-144), Volume 144 /

The real Fatou conjecture /

In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it c...

Descripción completa

Detalles Bibliográficos
Autores principales: Graczyk, Jacek, Świa̧tek, Grzegorz, 1964- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 1998.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_35369
003 MdBmJHUP
005 20230905043724.0
006 m o d
007 cr||||||||nn|n
008 140816s1998 nju o 00 0 eng d
020 |a 9781400865185 
020 |z 9780691002583 
020 |z 9780691002576 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Graczyk, Jacek. 
245 1 4 |a The Real Fatou Conjecture. (AM-144), Volume 144 /   |c by Jacek Graczyk and Grzegorz Świa̧tek. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 1998. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©1998. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v number144 
505 0 0 |t Frontmatter --  |t Contents --  |t Chapter 1. Review of Concepts --  |t Chapter 2. Quasiconformal Gluing --  |t Chapter 3. Polynomial-Like Property --  |t Chapter 4. Linear Growth of Moduli --  |t Chapter 5. Quasi conformal Techniques --  |t Bibliography --  |t Index. 
520 |a In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Polynomials.  |2 fast  |0 (OCoLC)fst01070715 
650 7 |a Mappings (Mathematics)  |2 fast  |0 (OCoLC)fst01008724 
650 7 |a Geodesics (Mathematics)  |2 fast  |0 (OCoLC)fst00940368 
650 7 |a MATHEMATICS  |x Complex Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 6 |a Polynômes. 
650 6 |a Applications (Mathematiques) 
650 6 |a Geodesiques (Mathematiques) 
650 4 |a Mathematik. 
650 0 |a Polynomials. 
650 0 |a Mappings (Mathematics) 
650 0 |a Geodesics (Mathematics) 
655 7 |a Electronic books.   |2 local 
700 1 |a Świa̧tek, Grzegorz,  |d 1964-  |e author. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
880 1 4 |6 245-00/(Q  |a The real Fatou conjecture /  |c by Jacek Graczyk and Grzegorz {acute}Swiѕtek. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/35369/ 
945 |a Project MUSE - Custom Collection