Cargando…

Instabilities and Fronts in Extended Systems /

The physics of extended systems is a topic of great interest for the experimentalist and the theoretician alike. There exists a large literature on this subject in which solutions, bifurcations, fronts, and the dynamical stability of these objects are discussed. To the uninitiated reader, the theore...

Descripción completa

Detalles Bibliográficos
Autores principales: Collet, Pierre, 1948- (Autor), Eckmann, Jean Pierre (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, [1990]
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_35324
003 MdBmJHUP
005 20230905043721.0
006 m o d
007 cr||||||||nn|n
008 890829t19901990nju o 00 0 eng d
020 |a 9781400861026 
020 |z 9780691636177 
020 |z 9780691607610 
020 |z 9780691085685 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Collet, Pierre,  |d 1948-  |e author. 
245 1 0 |a Instabilities and Fronts in Extended Systems /   |c Pierre Collet, Jean-Pierre Eckmann. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c [1990] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©[1990] 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton legacy library 
490 0 |a Princeton series in physics 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t Outline --  |t CHAPTER I. SETTING THE STAGE --  |t CHAPTER II. SMALL SOLUTIONS --  |t CHAPTER III. BIFURCATION THEORY --  |t CHAPTER IV. STATIONARY AND QUASISTATIONARY SOLUTIONS --  |t CHAPTER V. CONSEQUENCES OF THE LINEAR INSTABILITY OF STATIONARY SOLUTIONS --  |t CHAPTER VI. MULTISCALE ANALYSIS --  |t CHAPTER VII. FRONTS --  |t Outlook --  |t Notation --  |t Glossary --  |t References --  |t Analytical Index. 
520 |a The physics of extended systems is a topic of great interest for the experimentalist and the theoretician alike. There exists a large literature on this subject in which solutions, bifurcations, fronts, and the dynamical stability of these objects are discussed. To the uninitiated reader, the theoretical methods that lead to the various results often seem somewhat ad hoc, and it is not clear how to generalize them to the nextthat is, not yet solvedproblem. In an introduction to the subject of instabilities in spatially infinite systems, Pierre Collet and Jean-Pierre Eckmann aim to give a systematic account of these methods, and to work out the relevant features that make them operational. The book examines in detail a number of model equations from physics. The mathematical developments of the subject are based on bifurcation theory and on the theory of invariant manifolds. These are combined to give a coherent description of several problems in which instabilities occur, notably the Eckhaus instability and the formation of fronts in the Swift-Hohenberg equation. These phenomena can appear only in infinite systems, and this book breaks new ground as a systematic account of the mathematics connected with infinite space domains. Originally published in 1990. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. 
588 |a Description based on print version record. 
650 7 |a Stability.  |2 fast  |0 (OCoLC)fst01131203 
650 7 |a Differentiable dynamical systems.  |2 fast  |0 (OCoLC)fst00893426 
650 7 |a Bifurcation theory.  |2 fast  |0 (OCoLC)fst00831564 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a stability.  |2 aat 
650 6 |a Dynamique differentiable. 
650 6 |a Stabilite. 
650 6 |a Theorie de la bifurcation. 
650 0 |a Differentiable dynamical systems. 
650 0 |a Stability. 
650 0 |a Bifurcation theory. 
655 7 |a Electronic books.   |2 local 
700 1 |a Eckmann, Jean Pierre,  |e author. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/35324/ 
945 |a Project MUSE - Custom Collection