Cargando…

Hypo-Analytic Structures (PMS-40), Volume 40 : Local Theory (PMS-40)

In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the t...

Descripción completa

Detalles Bibliográficos
Autor principal: Treves, François
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2014.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_35314
003 MdBmJHUP
005 20230905043721.0
006 m o d
007 cr||||||||nn|n
008 140719s2014 nju o 00 0 eng d
020 |a 9781400862887 
020 |z 9780691606705 
020 |z 9780691635415 
020 |z 9780691087443 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Treves, François. 
245 1 0 |a Hypo-Analytic Structures (PMS-40), Volume 40 :   |b Local Theory (PMS-40) 
264 1 |a Princeton :  |b Princeton University Press,  |c 2014. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2014. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton Mathematical Series ;  |v v. 40 
500 |a Cover; Contents. 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t I. Formally and Locally Integrable Structures. Basic Definitions --  |t II. Local Approximation and Representation in Locally Integrable Structures --  |t III. Hypo-Analytic Structures. Hypocomplex Manifolds --  |t IV. Integrable Formal Structures. Normal Forms --  |t V. Involutive Structures With Boundary --  |t VI. Local Integraboity and Local Solvability in Elliptic Structures --  |t VII. Examples of Nonintegrability and of Nonsolvability --  |t VIII. Necessary Conditions for the Vanishing of the Cohomology. Local Solvability of a Single Vector Field --  |t IX. FBI Transform in a Hypo-Analytic Manifold --  |t X. Involutive Systems of Nonlinear First-Order Differential Equations --  |t References --  |t Index. 
520 |a In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Vector fields.  |2 fast  |0 (OCoLC)fst01164665 
650 7 |a Manifolds (Mathematics)  |2 fast  |0 (OCoLC)fst01007726 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 6 |a Champs vectoriels. 
650 6 |a Varietes (Mathematiques) 
650 6 |a Équations aux derivees partielles. 
650 0 |a Vector fields. 
650 0 |a Manifolds (Mathematics) 
650 0 |a Differential equations, Partial. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/35314/ 
945 |a Project MUSE - Custom Collection