Cargando…

Max Plus at Work : Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications /

Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Heidergott, Bernd (Autor), Woude, J. W. van der (Autor), Olsder, Geert Jan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxfordshire, England : Princeton University Press, 2006.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_35304
003 MdBmJHUP
005 20230905043720.0
006 m o d
007 cr||||||||nn|n
008 140829t20062006nju o 00 0 eng d
020 |a 9781400865239 
020 |z 9780691117638 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Heidergott, Bernd,  |e author. 
245 1 0 |a Max Plus at Work :   |b Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications /   |c Bernd Heidergott, Geert Jan Olsder, Jacob van der Woude. 
264 1 |a Oxfordshire, England :  |b Princeton University Press,  |c 2006. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2006. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton Series in Applied Mathematics 
505 0 |a Cover; Title; Copyright; Contents; Preface; Chapter 0. Prolegomenon; 0.1 Introductory Example; 0.2 On the Notation; 0.3 On Eigenvalues and Eigenvectors; 0.4 Some Modeling Issues; 0.5 Counter and Dater Descriptions; 0.6 Exercises; 0.7 Notes; PART I. MAX-PLUS ALGEBRA; Chapter 1. Max-Plus Algebra; 1.1 Basic Concepts and Definitions; 1.2 Vectors and Matrices; 1.3 A First Max-Plus Model; 1.4 The Projective Space; 1.5 Exercises; 1.6 Notes; Chapter 2. Spectral Theory; 2.1 Matrices and Graphs; 2.2 Eigenvalues and Eigenvectors; 2.3 Solving Linear Equations; 2.4 Exercises; 2.5 Notes. 
505 0 |a Chapter 3. Periodic Behavior and the Cycle-Time Vector3.1 Cyclicity and Transient Time; 3.2 The Cycle-Time Vector: Preliminary Results; 3.3 The Cycle-Time Vector: General Results; 3.4 A Sunflower Bouquet; 3.5 Exercises; 3.6 Notes ; Chapter 4. Asymptotic Qualitative Behavior; 4.1 Periodic Regimes; 4.2 Characterization of the Eigenspace; 4.3 Primitive Matrices; 4.4 Limits in the Projective Space; 4.5 Higher-Order Recurrence Relations; 4.6 Exercises; 4.7 Notes; Chapter 5. Numerical Procedures for Eigenvalues of Irreducible Matrices; 5.1 Karp''s Algorithm; 5.2 The Power Algorithm; 5.3 Exercises. 
505 0 |a 5.4 NotesChapter 6. A Numerical Procedure for Eigenvalues of Reducible Matrices; 6.1 Howard''s Algorithm; 6.2 Examples; 6.3 Howard''s Algorithm for Higher-Order Models; 6.4 Exercises; 6.5 Notes; PART II. TOOLS AND APPLICATIONS; Chapter 7. Petri Nets; 7.1 Petri Nets and Event Graphs; 7.2 The Autonomous Case; 7.3 The Nonautonomous Case; 7.4 Exercises; 7.5 Notes; Chapter 8. The Dutch Railway System Captured in a Max-Plus Model; 8.1 The Line System; 8.2 Construction of the Timed Event Graph; 8.3 State Space Description; 8.4 Application of Howard''s Algorithm; 8.5 Exercises; 8.6 Notes. 
505 0 |a Chapter 9. Delays, Stability Measures, and Results for the Whole Network9.1 Propagation of Delays; 9.2 Results for the Whole Dutch Intercity Network; 9.3 Other Modeling Issues ; 9.4 Exercises; 9.5 Notes; Chapter 10. Capacity Assessment; 10.1 Capacity Assessment with Different Types of Trains; 10.2 Capacity Assessment for a Series of Tunnels; 10.3 Exercises; 10.4 Notes; PART III. EXTENSIONS; Chapter 11. Stochastic Max-Plus Systems; 11.1 Basic Definitions and Examples; 11.2 The Subadditive Ergodic Theorem; 11.3 Matrices with Fixed Support; 11.4 Beyond Fixed Support; 11.5 Exercises; 11.6 Notes. 
505 0 |a Chapter 12. Min-Max-Plus Systems and Beyond12.1 Min-Max-Plus Systems; 12.2 Links to Other Mathematical Areas; 12.3 Exercises; 12.4 Notes; Chapter 13. Continuous and Synchronized Flows on Networks; 13.1 Dater and Counter Descriptions; 13.2 Continuous Flows without Capacity Constraints; 13.3 Continuous Flows with Capacity Constraints; 13.4 Exercises; 13.5 Notes; Bibliography; List of Symbols; Index. 
520 |a Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, compu. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a System theory.  |2 fast  |0 (OCoLC)fst01141423 
650 7 |a Matrices.  |2 fast  |0 (OCoLC)fst01012399 
650 7 |a MATHEMATICS  |x Algebra  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 0 |a System theory  |v Textbooks. 
650 0 |a Matrices  |v Textbooks. 
655 7 |a Textbooks.  |2 fast  |0 (OCoLC)fst01423863 
655 7 |a Electronic books.   |2 local 
700 1 |a Woude, J. W. van der,  |e author. 
700 1 |a Olsder, Geert Jan,  |e author. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/35304/ 
945 |a Project MUSE - Custom Collection