Green's Function Estimates for Lattice Schrödinger Operators and Applications. (AM-158) /
This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas...
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton, N.J. :
Princeton University Press,
2005.
|
Colección: | Book collections on Project MUSE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Frontmatter
- Contents
- Acknowledgment
- Chapter 1. Introduction
- Chapter 2. Transfer Matrix and Lyapounov Exponent
- Chapter 3. Herman's Subharmonicity Method
- Chapter 4. Estimates on Subharmonic Functions
- Chapter 5. LDT for Shift Model
- Chapter 6. Avalanche Principle in SL
- Chapter 7. Consequences for Lyapounov Exponent, IDS, and Green's Function
- Chapter 8. Refinements
- Chapter 9. Some Facts about Semialgebraic Sets
- Chapter 10. Localization
- Chapter 11. Generalization to Certain Long-Range Models
- Chapter 12. Lyapounov Exponent and Spectrum
- Chapter 13. Point Spectrum in Multifrequency Models at Small Disorder
- Chapter 14. A Matrix-Valued Cartan-Type Theorem
- Chapter 15. Application to Jacobi Matrices Associated with Skew Shifts
- Chapter 16. Application to the Kicked Rotor Problem
- Chapter 17. Quasi-Periodic Localization on the Z
- Chapter 18. An Approach to Melnikov's Theorem on Persistency of Nonresonant Lower Dimension Tori
- Chapter 19. Application to the Construction of Quasi-Periodic Solutions of Nonlinear Schrödinger Equations
- Chapter 20. Construction of Quasi-Periodic Solutions of Nonlinear Wave Equations
- Appendix.