Cargando…

Green's Function Estimates for Lattice Schrödinger Operators and Applications. (AM-158) /

This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas...

Descripción completa

Detalles Bibliográficos
Autor principal: Bourgain, Jean, 1954-2018
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2005.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_34944
003 MdBmJHUP
005 20230905043658.0
006 m o d
007 cr||||||||nn|n
008 120613s2005 nju o 00 0 eng d
010 |z  2004104492 
020 |a 9781400837144 
020 |z 9780691120973 
020 |z 9780691120980 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Bourgain, Jean,  |d 1954-2018. 
245 1 0 |a Green's Function Estimates for Lattice Schrödinger Operators and Applications. (AM-158) /   |c J. Bourgain. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2005. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2005. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 158 
505 0 0 |t Frontmatter --  |t Contents --  |t Acknowledgment --  |t Chapter 1. Introduction --  |t Chapter 2. Transfer Matrix and Lyapounov Exponent --  |t Chapter 3. Herman's Subharmonicity Method --  |t Chapter 4. Estimates on Subharmonic Functions --  |t Chapter 5. LDT for Shift Model --  |t Chapter 6. Avalanche Principle in SL --  |t Chapter 7. Consequences for Lyapounov Exponent, IDS, and Green's Function --  |t Chapter 8. Refinements --  |t Chapter 9. Some Facts about Semialgebraic Sets --  |t Chapter 10. Localization --  |t Chapter 11. Generalization to Certain Long-Range Models --  |t Chapter 12. Lyapounov Exponent and Spectrum --  |t Chapter 13. Point Spectrum in Multifrequency Models at Small Disorder --  |t Chapter 14. A Matrix-Valued Cartan-Type Theorem --  |t Chapter 15. Application to Jacobi Matrices Associated with Skew Shifts --  |t Chapter 16. Application to the Kicked Rotor Problem --  |t Chapter 17. Quasi-Periodic Localization on the Z --  |t Chapter 18. An Approach to Melnikov's Theorem on Persistency of Nonresonant Lower Dimension Tori --  |t Chapter 19. Application to the Construction of Quasi-Periodic Solutions of Nonlinear Schrödinger Equations --  |t Chapter 20. Construction of Quasi-Periodic Solutions of Nonlinear Wave Equations --  |t Appendix. 
520 |a This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called "non-perturbative" methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations. Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological "state of the art." 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Schrödingervergelijking.  |2 gtt 
650 7 |a Hamiltonianen.  |2 gtt 
650 7 |a Green-functies.  |2 gtt 
650 7 |a Mathematische fysica.  |2 gtt 
650 7 |a Schrödinger operator.  |2 fast  |0 (OCoLC)fst01108122 
650 7 |a Hamiltonian systems.  |2 fast  |0 (OCoLC)fst00950772 
650 7 |a Green's functions.  |2 fast  |0 (OCoLC)fst00947660 
650 7 |a Evolution equations.  |2 fast  |0 (OCoLC)fst00917332 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 6 |a Operateur de Schrödinger. 
650 6 |a Équations d'evolution. 
650 6 |a Systemes hamiltoniens. 
650 6 |a Fonctions de Green. 
650 0 |a Evolution equations. 
650 0 |a Hamiltonian systems. 
650 0 |a Green's functions. 
650 0 |a Schrödinger operator. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/34944/ 
945 |a Project MUSE - Custom Collection