Cargando…

The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44 /

The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level...

Descripción completa

Detalles Bibliográficos
Autor principal: Morgan, John, 1946 March 21- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, 1996.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_34702
003 MdBmJHUP
005 20230905043643.0
006 m o d
007 cr||||||||nn|n
008 140829t19961996nju o 00 0 eng d
020 |a 9781400865161 
020 |z 9780691025971 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Morgan, John,  |d 1946 March 21-  |e author. 
245 1 4 |a The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44 /   |c John W. Morgan. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c 1996. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©1996. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Mathematical Notes ;  |v 44 
505 0 0 |t Frontmatter --  |t Contents --  |t 1. Introduction --  |t 2. Clifford Algebras and Spin Groups --  |t 3. Spin Bundles and the Dirac Operator --  |t 4. The Seiberg-Witten Moduli Space --  |t 5. Curvature Identities and Bounds --  |t 6. The Seiberg-Witten Invariant --  |t 7. Invariants of Kahler Surfaces --  |t Bibliography. 
520 |a The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants. The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic operators on an appropriate infinite dimensional space of configurations. It is demonstrated that the space of solutions to these equations, called the Seiberg-Witten moduli space, is finite dimensional, and its dimension is then computed. In contrast to the SU(2)-case, the Seiberg-Witten moduli spaces are shown to be compact. The Seiberg-Witten invariant is then essentially the homology class in the space of configurations represented by the Seiberg-Witten moduli space. The last chapter gives a flavor for the applications of these new invariants by computing the invariants for most Kahler surfaces and then deriving some basic toological consequences for these surfaces. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Seiberg-Witten invariants.  |2 fast  |0 (OCoLC)fst01111244 
650 7 |a Mathematical physics.  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Four-manifolds (Topology)  |2 fast  |0 (OCoLC)fst00933389 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 6 |a Physique mathematique. 
650 6 |a Invariants de Seiberg-Witten. 
650 6 |a Varietes topologiques à 4 dimensions. 
650 0 |a Mathematical physics. 
650 0 |a Seiberg-Witten invariants. 
650 0 |a Four-manifolds (Topology) 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/34702/ 
945 |a Project MUSE - Custom Collection