Cargando…

Global Surgery Formula for the Casson-Walker Invariant. (AM-140), Volume 140 /

This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S 3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S 3 is described, and it is proven that F con...

Descripción completa

Detalles Bibliográficos
Autor principal: Lescop, Christine, 1966-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 1996.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_34689
003 MdBmJHUP
005 20230905043642.0
006 m o d
007 cr||||||||nn|n
008 140819s1996 nju o 00 0 eng d
020 |a 9781400865154 
020 |z 9780691021324 
020 |z 9780691021331 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Lescop, Christine,  |d 1966- 
245 1 0 |a Global Surgery Formula for the Casson-Walker Invariant. (AM-140), Volume 140 /   |c by Christine Lescop. 
264 1 |a Princeton :  |b Princeton University Press,  |c 1996. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©1996. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v number 140 
505 0 |a Ch. 1. Introduction and statements of the results -- Ch. 2. The Alexander series of a link in a rational homology sphere and some of its properties -- Ch. 3. Invariance of the surgery formula under a twist homeomorphism -- Ch. 4. The formula for surgeries starting from rational homology spheres -- Ch. 5. The invariant [lambda] for 3-manifolds with nonzero rank -- Ch. 6. Applications and variants of the surgery formula -- Appendix: More about the Alexander series. 
520 |a This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S 3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S 3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional topology. l becomes simpler as the first Betti number increases. As an explicit function of Alexander polynomials and surgery coefficients of framed links, the function F extends in a natural way to framed links in rational homology spheres. It is proven that F describes the variation of l under any surgery starting from a rational homology sphere. Thus F yields a global surgery formula for the Casson invariant. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Varietes topologiques à 3 dimensions.  |2 ram 
650 7 |a Chirurgie (Topologie)  |2 ram 
650 1 7 |a Chirurgie (topologie)  |2 gtt 
650 1 7 |a Manifolds.  |2 gtt 
650 7 |a Three-manifolds (Topology)  |2 fast  |0 (OCoLC)fst01150339 
650 7 |a Surgery (Topology)  |2 fast  |0 (OCoLC)fst01139395 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 6 |a Varietes topologiques à 3 dimensions. 
650 6 |a Chirurgie (Topologie) 
650 0 |a Three-manifolds (Topology) 
650 0 |a Surgery (Topology) 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/34689/ 
945 |a Project MUSE - Custom Collection