Cargando…

Euler Systems. (AM-147), Volume 147 /

One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound...

Descripción completa

Detalles Bibliográficos
Autor principal: Rubin, Karl (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, England : Princeton University Press, 2000.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_34573
003 MdBmJHUP
005 20230905043635.0
006 m o d
007 cr||||||||nn|n
008 140822t20002000nju o 00 0 eng d
020 |a 9781400865208 
020 |z 9780691050751 
020 |z 9780691050768 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Rubin, Karl,  |e author. 
245 1 0 |a Euler Systems. (AM-147), Volume 147 /   |c by Karl Rubin. 
264 1 |a Chichester, England :  |b Princeton University Press,  |c 2000. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2000. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of Mathematics Studies ;  |v Number 147 
505 0 0 |t Frontmatter --  |t Contents --  |t Acknowledgments /  |r Rubin, Karl --  |t Introduction --  |t Chapter 1. Galois Cohomology of p-adic Representations --  |t Chapter 2. Euler Systems: Definition and Main Results --  |t Chapter 3. Examples and Applications --  |t Chapter 4. Derived Cohomology Classes --  |t Chapter 5. Bounding the Selmer Group --  |t Chapter 6. Twisting --  |t Chapter 7. Iwasawa Theory --  |t Chapter 8. Euler Systems and p-adic L-functions --  |t Chapter 9. Variants --  |t Appendix A. Linear Algebra --  |t Appendix B. Continuous Cohomology and Inverse Limits --  |t Appendix C. Cohomology of p-adic Analytic Groups --  |t Appendix D. p-adic Calculations in Cyclotomic Fields --  |t Bibliography --  |t Index of Symbols --  |t Subject Index. 
520 |a One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a p-adic numbers.  |2 fast  |0 (OCoLC)fst01185030 
650 7 |a Algebraic number theory.  |2 fast  |0 (OCoLC)fst00804937 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 6 |a Nombres p-adiques. 
650 6 |a Theorie algebrique des nombres. 
650 0 |a p-adic numbers. 
650 0 |a Algebraic number theory. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/34573/ 
945 |a Project MUSE - Custom Collection