|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
musev2_33479 |
003 |
MdBmJHUP |
005 |
20230905043528.0 |
006 |
m o d |
007 |
cr||||||||nn|n |
008 |
111115s2009 nju o 00 0 eng d |
010 |
|
|
|z 2008039091
|
020 |
|
|
|a 9781400837113
|
020 |
|
|
|z 9780691138213
|
020 |
|
|
|z 9780691138220
|
040 |
|
|
|a MdBmJHUP
|c MdBmJHUP
|
100 |
1 |
|
|a Kato, K.
|q (Kazuya)
|
245 |
1 |
0 |
|a Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169) /
|c Kazuya Kato and Sampei Usui.
|
264 |
|
1 |
|a Princeton, N.J. :
|b Princeton University Press,
|c 2009.
|
264 |
|
3 |
|a Baltimore, Md. :
|b Project MUSE,
|c 0000
|
264 |
|
4 |
|c ©2009.
|
300 |
|
|
|a 1 online resource:
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Annals of mathematics studies ;
|v no. 169
|
505 |
0 |
0 |
|g 0.1
|t Hodge Theory
|g 7 --
|g 0.2
|t Logarithmic Hodge Theory
|g 11 --
|g 0.3
|t Griffiths Domains and Moduli of PH
|g 24 --
|g 0.4
|t Toroidal Partial Compactifications of [Gamma]/D and Moduli of PLH
|g 30 --
|g 0.5
|t Fundamental Diagram and Other Enlargements of D
|g 43 --
|g 0.7
|t Notation and Convention
|g 67 --
|g Chapter 1
|t Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits
|g 70 --
|g 1.1
|t Hodge Structures and Polarized Hodge Structures
|g 70 --
|g 1.2
|t Classifying Spaces of Hodge Structures
|g 71 --
|g 1.3
|t Extended Classifying Spaces
|g 72 --
|g Chapter 2
|t Logarithmic Hodge Structures
|g 75 --
|g 2.1
|t Logarithmic Structures
|g 75 --
|g 2.2
|t Ringed Spaces (X[superscript log], O[subscript X superscript log])
|g 81 --
|g 2.3
|t Local Systems on X[superscript log]
|g 88 --
|g 2.4
|t Polarized Logarithmic Hodge Structures
|g 94 --
|g 2.5
|t Nilpotent Orbits and Period Maps
|g 97 --
|g 2.6
|t Logarithmic Mixed Hodge Structures
|g 105 --
|g Chapter 3
|t Strong Topology and Logarithmic Manifolds
|g 107 --
|g 3.1
|t Strong Topology
|g 107 --
|g 3.2
|t Generalizations of Analytic Spaces
|g 115 --
|g 3.3
|t Sets E[subscript sigma] and E[subscript sigma superscript sharp]
|g 120 --
|g 3.4
|t Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], E[subscript sigma superscript sharp], and D[subscript Sigma superscript sharp]
|g 125 --
|g 3.5
|t Infinitesimal Calculus and Logarithmic Manifolds
|g 127 --
|g 3.6
|t Logarithmic Modifications
|g 133 --
|g Chapter 4
|t Main Results
|g 146 --
|g 4.1
|t Theorem A: The Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], and [Gamma]/D[subscript Sigma sharp]
|g 146 --
|g 4.2
|t Theorem B: The Functor PLH[subscript phi]
|g 147 --
|g 4.3
|t Extensions of Period Maps
|g 148 --
|g 4.4
|t Infinitesimal Period Maps
|g 153 --
|g Chapter 5
|t Fundamental Diagram
|g 157 --
|g 5.1
|t Borel-Serre Spaces (Review)
|g 158 --
|g 5.2
|t Spaces of SL(2)-Orbits (Review)
|g 165 --
|g 5.3
|t Spaces of Valuative Nilpotent Orbits
|g 170 --
|g 5.4
|t Valuative Nilpotent i-Orbits and SL(2)-Orbits
|g 173 --
|g Chapter 6
|t The Map [psi] : D[subscript val superscript sharp] to D[subscript SL] (2)
|g 175 --
|g 6.1
|t Review of [CKS] and Some Related Results
|g 175 --
|g 6.2
|t Proof of Theorem 5.4.2
|g 186 --
|g 6.3
|t Proof of Theorem 5.4.3 (i)
|g 190 --
|g 6.4
|t Proofs of Theorem 5.4.3 (ii) and Theorem 5.4.4
|g 195 --
|g Chapter 7
|t Proof of Theorem A
|g 205 --
|g 7.1
|t Proof of Theorem A (i)
|g 205 --
|g 7.2
|t Action of [sigma subscript C] on E[subscript sigma]
|g 209 --
|g 7.3
|t Proof of Theorem A for [Gamma]([sigma])[superscript gp]/D[subscript sigma]
|g 215 --
|g 7.4
|t Proof of Theorem A for [Gamma]/D[subscript Sigma]
|g 220 --
|g Chapter 8
|t Proof of Theorem B
|g 226 --
|g 8.1
|t Logarithmic Local Systems
|g 226 --
|g 8.2
|t Proof of Theorem B
|g 229 --
|g 8.3
|t Relationship among Categories of Generalized Analytic Spaces
|g 235 --
|g 8.4
|t Proof of Theorem 0.5.29
|g 241 --
|g Chapter 9
|t [flat]-Spaces
|g 244 --
|g 9.1
|t Definitions and Main Properties
|g 244 --
|g 9.2
|t Proofs of Theorem 9.1.4 for [Gamma]/X[subscript BS superscript flat], [Gamma]/D[superscript flat subscript BS], and [Gamma]/D[subscript BS, val superscript flat]
|g 246 --
|g 9.3
|t Proof of Theorem 9.1.4 for [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat]
|g 248 --
|g 9.4
|t Extended Period Maps
|g 249 --
|g Chapter 10
|t Local Structures of D[subscript SL(2)] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat]
|g 251 --
|g 10.1
|t Local Structures of D[subscript SL(2)]
|g 251 --
|g 10.2
|t A Special Open Neighborhood U(p)
|g 255 --
|g 10.3
|t Proof of Theorem 10.1.3
|g 263 --
|g 10.4
|t Local Structures of D[subscript SL(2), less than or equal 1] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat]
|g 269 --
|g Chapter 11
|t Moduli of PLH with Coefficients
|g 271 --
|g 11.1
|t Space [Gamma]/D[subscript Sigma superscript A]
|g 271 --
|g 11.2
|t PLH with Coefficients
|g 274 --
|g 11.3
|t Moduli
|g 275 --
|g Chapter 12
|t Examples and Problems
|g 277 --
|g 12.1
|t Siegel Upper Half Spaces
|g 277 --
|g 12.2
|t Case G[subscript R] [bsime] O(1, n -- 1, R)
|g 281 --
|g 12.3
|t Example of Weight 3 (A)
|g 290 --
|g 12.4
|t Example of Weight 3 (B)
|g 295 --
|g 12.5
|t Relationship with [U2]
|g 299 --
|g 12.6
|t Complete Fans
|g 301 --
|g 12.7
|t Problems
|g 304 --
|g A1
|t Positive Direction of Local Monodromy
|g 307 --
|g A2
|t Proper Base Change Theorem for Topological Spaces
|g 310.
|
520 |
|
|
|a In 1970, Philip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kato and Usui realize this dream by creating a logarithmic Hodge theory.
|
546 |
|
|
|a English.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
7 |
|a Logarithmus
|2 gnd
|
650 |
|
7 |
|a Hodge-Theorie
|2 gnd
|
650 |
|
7 |
|a Hodge-Struktur
|2 gnd
|
650 |
|
7 |
|a Logarithms.
|2 fast
|0 (OCoLC)fst01001933
|
650 |
|
7 |
|a Hodge theory.
|2 fast
|0 (OCoLC)fst00958600
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a logarithms.
|2 aat
|
650 |
|
6 |
|a Logarithmes.
|
650 |
|
6 |
|a Theorie de Hodge.
|
650 |
|
0 |
|a Logarithms.
|
650 |
|
0 |
|a Hodge theory.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
700 |
1 |
|
|a Usui, Sampei.
|
710 |
2 |
|
|a Project Muse.
|e distributor
|
830 |
|
0 |
|a Book collections on Project MUSE.
|
856 |
4 |
0 |
|z Texto completo
|u https://projectmuse.uam.elogim.com/book/33479/
|
945 |
|
|
|a Project MUSE - Custom Collection
|