Cargando…

Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169) /

In 1970, Philip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kato and Usui realize this dream by creating a logarithmic Hodge theory.

Detalles Bibliográficos
Autor principal: Kato, K. (Kazuya)
Otros Autores: Usui, Sampei
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2009.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_33479
003 MdBmJHUP
005 20230905043528.0
006 m o d
007 cr||||||||nn|n
008 111115s2009 nju o 00 0 eng d
010 |z  2008039091 
020 |a 9781400837113 
020 |z 9780691138213 
020 |z 9780691138220 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Kato, K.  |q (Kazuya) 
245 1 0 |a Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169) /   |c Kazuya Kato and Sampei Usui. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2009. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2009. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 169 
505 0 0 |g 0.1  |t Hodge Theory  |g 7 --  |g 0.2  |t Logarithmic Hodge Theory  |g 11 --  |g 0.3  |t Griffiths Domains and Moduli of PH  |g 24 --  |g 0.4  |t Toroidal Partial Compactifications of [Gamma]/D and Moduli of PLH  |g 30 --  |g 0.5  |t Fundamental Diagram and Other Enlargements of D  |g 43 --  |g 0.7  |t Notation and Convention  |g 67 --  |g Chapter 1  |t Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits  |g 70 --  |g 1.1  |t Hodge Structures and Polarized Hodge Structures  |g 70 --  |g 1.2  |t Classifying Spaces of Hodge Structures  |g 71 --  |g 1.3  |t Extended Classifying Spaces  |g 72 --  |g Chapter 2  |t Logarithmic Hodge Structures  |g 75 --  |g 2.1  |t Logarithmic Structures  |g 75 --  |g 2.2  |t Ringed Spaces (X[superscript log], O[subscript X superscript log])  |g 81 --  |g 2.3  |t Local Systems on X[superscript log]  |g 88 --  |g 2.4  |t Polarized Logarithmic Hodge Structures  |g 94 --  |g 2.5  |t Nilpotent Orbits and Period Maps  |g 97 --  |g 2.6  |t Logarithmic Mixed Hodge Structures  |g 105 --  |g Chapter 3  |t Strong Topology and Logarithmic Manifolds  |g 107 --  |g 3.1  |t Strong Topology  |g 107 --  |g 3.2  |t Generalizations of Analytic Spaces  |g 115 --  |g 3.3  |t Sets E[subscript sigma] and E[subscript sigma superscript sharp]  |g 120 --  |g 3.4  |t Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], E[subscript sigma superscript sharp], and D[subscript Sigma superscript sharp]  |g 125 --  |g 3.5  |t Infinitesimal Calculus and Logarithmic Manifolds  |g 127 --  |g 3.6  |t Logarithmic Modifications  |g 133 --  |g Chapter 4  |t Main Results  |g 146 --  |g 4.1  |t Theorem A: The Spaces E[subscript sigma], [Gamma]/D[subscript Sigma], and [Gamma]/D[subscript Sigma sharp]  |g 146 --  |g 4.2  |t Theorem B: The Functor PLH[subscript phi]  |g 147 --  |g 4.3  |t Extensions of Period Maps  |g 148 --  |g 4.4  |t Infinitesimal Period Maps  |g 153 --  |g Chapter 5  |t Fundamental Diagram  |g 157 --  |g 5.1  |t Borel-Serre Spaces (Review)  |g 158 --  |g 5.2  |t Spaces of SL(2)-Orbits (Review)  |g 165 --  |g 5.3  |t Spaces of Valuative Nilpotent Orbits  |g 170 --  |g 5.4  |t Valuative Nilpotent i-Orbits and SL(2)-Orbits  |g 173 --  |g Chapter 6  |t The Map [psi] : D[subscript val superscript sharp] to D[subscript SL] (2)  |g 175 --  |g 6.1  |t Review of [CKS] and Some Related Results  |g 175 --  |g 6.2  |t Proof of Theorem 5.4.2  |g 186 --  |g 6.3  |t Proof of Theorem 5.4.3 (i)  |g 190 --  |g 6.4  |t Proofs of Theorem 5.4.3 (ii) and Theorem 5.4.4  |g 195 --  |g Chapter 7  |t Proof of Theorem A  |g 205 --  |g 7.1  |t Proof of Theorem A (i)  |g 205 --  |g 7.2  |t Action of [sigma subscript C] on E[subscript sigma]  |g 209 --  |g 7.3  |t Proof of Theorem A for [Gamma]([sigma])[superscript gp]/D[subscript sigma]  |g 215 --  |g 7.4  |t Proof of Theorem A for [Gamma]/D[subscript Sigma]  |g 220 --  |g Chapter 8  |t Proof of Theorem B  |g 226 --  |g 8.1  |t Logarithmic Local Systems  |g 226 --  |g 8.2  |t Proof of Theorem B  |g 229 --  |g 8.3  |t Relationship among Categories of Generalized Analytic Spaces  |g 235 --  |g 8.4  |t Proof of Theorem 0.5.29  |g 241 --  |g Chapter 9  |t [flat]-Spaces  |g 244 --  |g 9.1  |t Definitions and Main Properties  |g 244 --  |g 9.2  |t Proofs of Theorem 9.1.4 for [Gamma]/X[subscript BS superscript flat], [Gamma]/D[superscript flat subscript BS], and [Gamma]/D[subscript BS, val superscript flat]  |g 246 --  |g 9.3  |t Proof of Theorem 9.1.4 for [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat]  |g 248 --  |g 9.4  |t Extended Period Maps  |g 249 --  |g Chapter 10  |t Local Structures of D[subscript SL(2)] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat]  |g 251 --  |g 10.1  |t Local Structures of D[subscript SL(2)]  |g 251 --  |g 10.2  |t A Special Open Neighborhood U(p)  |g 255 --  |g 10.3  |t Proof of Theorem 10.1.3  |g 263 --  |g 10.4  |t Local Structures of D[subscript SL(2), less than or equal 1] and [Gamma]/D[subscript SL(2), less than or equal 1 superscript flat]  |g 269 --  |g Chapter 11  |t Moduli of PLH with Coefficients  |g 271 --  |g 11.1  |t Space [Gamma]/D[subscript Sigma superscript A]  |g 271 --  |g 11.2  |t PLH with Coefficients  |g 274 --  |g 11.3  |t Moduli  |g 275 --  |g Chapter 12  |t Examples and Problems  |g 277 --  |g 12.1  |t Siegel Upper Half Spaces  |g 277 --  |g 12.2  |t Case G[subscript R] [bsime] O(1, n -- 1, R)  |g 281 --  |g 12.3  |t Example of Weight 3 (A)  |g 290 --  |g 12.4  |t Example of Weight 3 (B)  |g 295 --  |g 12.5  |t Relationship with [U2]  |g 299 --  |g 12.6  |t Complete Fans  |g 301 --  |g 12.7  |t Problems  |g 304 --  |g A1  |t Positive Direction of Local Monodromy  |g 307 --  |g A2  |t Proper Base Change Theorem for Topological Spaces  |g 310. 
520 |a In 1970, Philip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kato and Usui realize this dream by creating a logarithmic Hodge theory. 
546 |a English. 
588 |a Description based on print version record. 
650 7 |a Logarithmus  |2 gnd 
650 7 |a Hodge-Theorie  |2 gnd 
650 7 |a Hodge-Struktur  |2 gnd 
650 7 |a Logarithms.  |2 fast  |0 (OCoLC)fst01001933 
650 7 |a Hodge theory.  |2 fast  |0 (OCoLC)fst00958600 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a logarithms.  |2 aat 
650 6 |a Logarithmes. 
650 6 |a Theorie de Hodge. 
650 0 |a Logarithms. 
650 0 |a Hodge theory. 
655 7 |a Electronic books.   |2 local 
700 1 |a Usui, Sampei. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/33479/ 
945 |a Project MUSE - Custom Collection