Cargando…

Modular Forms and Special Cycles on Shimura Curves. (AM-161) /

Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating fu...

Descripción completa

Detalles Bibliográficos
Autor principal: Kudla, Stephen S., 1950-
Otros Autores: Yang, Tonghai, 1963-, Rapoport, M., 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2006.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_33476
003 MdBmJHUP
005 20230905043528.0
006 m o d
007 cr||||||||nn|n
008 050907s2006 nju o 00 0 eng d
020 |a 9781400837168 
020 |z 9780691125510 
020 |z 9780691125503 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Kudla, Stephen S.,  |d 1950- 
245 1 0 |a Modular Forms and Special Cycles on Shimura Curves. (AM-161) /   |c Stephen S. Kudla, Michael Rapoport, Tonghai Yang. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2006. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2006. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 161 
505 0 0 |t Frontmatter --  |t Contents --  |t Acknowledgments --  |t Chapter 1. Introduction --  |t Chapter 2. Arithmetic intersection theory on stacks --  |t Chapter 3. Cycles on Shimura curves --  |t Chapter 4. An arithmetic theta function --  |t Chapter 5. The central derivative of a genus two Eisenstein series --  |t Chapter 6. The generating function for 0-cycles --  |t Chapter 6 Appendix --  |t Chapter 7. An inner product formula --  |t Chapter 8. On the doubling integral --  |t Chapter 9. Central derivatives of L-functions --  |t Index. 
520 |a Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soule arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions 
546 |a In English. 
588 |a Description based on print version record. 
650 0 7 |a Thetafunktion.  |2 swd 
650 0 7 |a Shimura-Kurve.  |2 swd 
650 0 7 |a Eisenstein-Reihe.  |2 swd 
650 0 7 |a Arithmetische Geometrie.  |2 swd 
650 7 |a Thetafunktion  |2 gnd 
650 7 |a Shimura-Kurve  |2 gnd 
650 7 |a Eisenstein-Reihe  |2 gnd 
650 7 |a Arithmetische Geometrie  |2 gnd 
650 7 |a Shimura varieties.  |2 fast  |0 (OCoLC)fst01116007 
650 7 |a Arithmetical algebraic geometry.  |2 fast  |0 (OCoLC)fst00814526 
650 7 |a MATHEMATICS  |x Functional Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 6 |a Varietes de Shimura. 
650 6 |a Geometrie algebrique arithmetique. 
650 0 |a Shimura varieties. 
650 0 |a Arithmetical algebraic geometry. 
655 7 |a Electronic books.   |2 local 
700 1 |a Yang, Tonghai,  |d 1963- 
700 1 |a Rapoport, M.,  |d 1948- 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/33476/ 
945 |a Project MUSE - Custom Collection