Cargando…

On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (AM-157) /

In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory...

Descripción completa

Detalles Bibliográficos
Autor principal: Green, M. (Mark)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2004.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_33474
003 MdBmJHUP
005 20230905043528.0
006 m o d
007 cr||||||||nn|n
008 120307s2004 nju o 00 0 eng d
020 |a 9781400837175 
020 |z 9780691120430 
020 |z 9780691120447 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Green, M.  |q (Mark) 
245 1 0 |a On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (AM-157) /   |c Mark Green and Phillip Griffiths. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2004. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2004. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 157 
505 0 0 |t Frontmatter --  |t Contents --  |t Abstract --  |t Chapter One. Introduction --  |t Chapter Two. The Classical Case When n 1 --  |t Chapter Three. Differential Geometry of Symmetric Products --  |t Chapter Four. Absolute Differentials (I) --  |t Chapter Five Geometric Description of T̳Z --  |t Chapter Six. Absolute Differentials (II) --  |t Chapter Seven. The Ext-definition of TZ --  |t Chapter Eight. Tangents to Related Spaces --  |t Chapter Nine. Applications and Examples --  |t Chapter Ten. Speculations and Questions --  |t Bibliography --  |t Index. 
520 |a In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles. The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Angeniol and Lejeune-Jalabert. The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Hodge theory.  |2 fast  |0 (OCoLC)fst00958600 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
650 7 |a Algebraic cycles.  |2 fast  |0 (OCoLC)fst00804930 
650 7 |a MATHEMATICS  |x Algebra  |x Abstract.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 6 |a Geometrie algebrique. 
650 6 |a Theorie de Hodge. 
650 6 |a Cycles algebriques. 
650 0 |a Hodge theory. 
650 0 |a Geometry, Algebraic. 
650 0 |a Algebraic cycles. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/33474/ 
945 |a Project MUSE - Custom Collection