Cargando…

Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (AM-154) /

This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important appl...

Descripción completa

Detalles Bibliográficos
Autor principal: Kamvissis, Spyridon
Otros Autores: Miller, Peter D. (Peter David), 1967-, McLaughlin, K. T-R (Kenneth T-R), 1969-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2003.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_33473
003 MdBmJHUP
005 20230905043528.0
006 m o d
007 cr||||||||nn|n
008 130415s2003 nju o 00 0 eng d
020 |a 9781400837182 
020 |z 9780691114835 
020 |z 9780691114828 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Kamvissis, Spyridon. 
245 1 0 |a Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (AM-154) /   |c Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2003. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2003. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 154 
505 0 |a Cover; Title; Copyright; Contents; List of Figures and Tables; Preface; Chapter 1. Introduction and Overview; Chapter 2. Holomorphic Riemann-Hilbert Problems for Solitons; Chapter 3. Semiclassical Soliton Ensembles; Chapter 4. Asymptotic Analysis of the Inverse Problem; Chapter 5. Direct Construction of the Complex Phase; Chapter 6. The Genus-Zero Ansatz; Chapter 7. The Transition to Genus Two; Chapter 8. Variational Theory of the Complex Phase; Chapter 9. Conclusion and Outlook; Appendix A. Hölder Theory of Local Riemann-Hilbert Problems 
505 0 |a Appendix B. Near-Identity Riemann-Hilbert Problems in L2Bibliography; Index 
520 |a This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis. 
546 |a In English. 
588 |a Description based on print version record. 
650 1 7 |a Solitons.  |2 gtt 
650 1 7 |a Schrödingervergelijking.  |2 gtt 
650 7 |a Soliton  |2 gnd 
650 7 |a Schrödinger-Gleichung  |2 gnd 
650 7 |a Nichtlineare Schrödinger-Gleichung  |2 gnd 
650 7 |a Schrödinger equation.  |2 fast  |0 (OCoLC)fst01108121 
650 7 |a MATHEMATICS  |x Complex Analysis.  |2 bisacsh 
650 7 |a SCIENCE  |x Waves & Wave Mechanics.  |2 bisacsh 
650 6 |a Équation de Schrödinger. 
650 0 |a Schrödinger equation. 
655 7 |a Electronic books.   |2 local 
700 1 |a Miller, Peter D.  |q (Peter David),  |d 1967- 
700 1 |a McLaughlin, K. T-R  |q (Kenneth T-R),  |d 1969- 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/33473/ 
945 |a Project MUSE - Custom Collection