Cargando…

Arithmetic Compactifications of PEL-Type Shimura Varieties /

"By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to gradu...

Descripción completa

Detalles Bibliográficos
Autor principal: Lan, Kai-Wen (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Princeton University Press, [2013]
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_33184
003 MdBmJHUP
005 20230905043510.0
006 m o d
007 cr||||||||nn|n
008 120723t20132013nju o 00 0 eng d
020 |a 9781400846016 
020 |z 9780691156545 
020 |z 9781400847518 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Lan, Kai-Wen,  |e author. 
245 1 0 |a Arithmetic Compactifications of PEL-Type Shimura Varieties /   |c Kai-Wen Lan. 
264 1 |a Oxford :  |b Princeton University Press,  |c [2013] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©[2013] 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society monographs ;  |v vol. 36 
505 0 |a Definition of moduli problems -- Representability of moduli problems -- Structures of semi-Abelian schemes -- Theory of degeneration for polarized Abelian schemes -- Degeneration data for additional structures -- Algebraic constructions of toroidal compactifications -- Algebraic construction of minimal compactifications -- Algebraic spaces and algebraic stacks -- Deformations and Artin's criterion. 
520 |a "By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary."--Publisher's website. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Shimura varieties.  |2 fast  |0 (OCoLC)fst01116007 
650 7 |a Arithmetical algebraic geometry.  |2 fast  |0 (OCoLC)fst00814526 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 6 |a Geometrie algebrique arithmetique. 
650 6 |a Varietes de Shimura. 
650 0 |a Arithmetical algebraic geometry. 
650 0 |a Shimura varieties. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/33184/ 
945 |a Project MUSE - Custom Collection