Cargando…

On the Cohomology of Certain Non-Compact Shimura Varieties (AM-173) /

This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois g...

Descripción completa

Detalles Bibliográficos
Autor principal: Morel, Sophie, 1979-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2010.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_31188
003 MdBmJHUP
005 20230905043309.0
006 m o d
007 cr||||||||nn|n
008 110117s2010 nju o 00 0 eng d
020 |a 9781400835393 
020 |z 9780691142937 
020 |z 9780691142920 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Morel, Sophie,  |d 1979- 
245 1 0 |a On the Cohomology of Certain Non-Compact Shimura Varieties (AM-173) /   |c Sophie Morel ; with an appendix by Robert Kottwitz. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2010. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2010. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 173 
505 0 |a Preliminaries; Contents; Preface; Chapter 1 The fixed point formula; Chapter 2 The groups; Chapter 3 Discrete series; Chapter 4 Orbital integrals at p; Chapter 5 The geometric side of the stable trace formula; Chapter 6 Stabilization of the fixed point formula; Chapter 7 Applications; Chapter 8 The twisted trace formula; Chapter 9 The twisted fundamental lemma; Appendix Comparison of two versions of twisted transfer factors; Bibliography; Index. 
520 |a This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology. Morel use. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Shimura varieties.  |2 fast  |0 (OCoLC)fst01116007 
650 7 |a Homology theory.  |2 fast  |0 (OCoLC)fst00959720 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 6 |a Homologie. 
650 6 |a Varietes de Shimura. 
650 0 |a Homology theory. 
650 0 |a Shimura varieties. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/31188/ 
945 |a Project MUSE - Custom Collection