Cargando…

Matrices, Moments and Quadrature with Applications /

This computationally oriented work describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms.

Detalles Bibliográficos
Autor principal: Golub, Gene H. (Gene Howard), 1932-2007
Otros Autores: Meurant, Gerard A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Princeton University Press, [2010]
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_31156
003 MdBmJHUP
005 20230905043307.0
006 m o d
007 cr||||||||nn|n
008 110117t20102010nju o 00 0 eng d
020 |a 9781400833887 
020 |z 9780691143415 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Golub, Gene H.  |q (Gene Howard),  |d 1932-2007. 
245 1 0 |a Matrices, Moments and Quadrature with Applications /   |c Gene H. Golub and Gerard Meurant. 
264 1 |a Oxford :  |b Princeton University Press,  |c [2010] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©[2010] 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton series in applied mathematics 
505 0 |a Preliminaries; Contents; Preface; Chapter 1. Introduction; Chapter 2. Orthogonal Polynomials; Chapter 3. Properties of Tridiagonal Matrices; Chapter 4. The Lanczos and Conjugate Gradient Algorithms; Chapter 5. Computation of the Jacobi Matrices; Chapter 6. Gauss Quadrature; Chapter 7. Bounds for Bilinear Forms uT f(A)v; Chapter 8. Extensions to Nonsymmetric Matrices; Chapter 9. Solving Secular Equations; Chapter 10. Examples of Gauss Quadrature Rules; Chapter 11. Bounds and Estimates for Elements of Functions of Matrices. 
520 8 |a This computationally oriented work describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. 
588 |a Description based on print version record. 
650 7 |a Numerische Mathematik  |x Matrix (Math.)  |2 idsbb 
650 7 |a Matrix  |x (Math.)  |x Numerische Mathematik.  |2 idsbb 
650 7 |a Orthogonale Polynome  |2 gnd 
650 7 |a Numerisches Verfahren  |2 gnd 
650 7 |a Matrix  |g Mathematik  |2 gnd 
650 7 |a Bilinearform  |2 gnd 
650 7 |a Algorithmus  |2 gnd 
650 7 |a Numerical analysis.  |2 fast  |0 (OCoLC)fst01041273 
650 7 |a Matrices.  |2 fast  |0 (OCoLC)fst01012399 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Matrices.  |2 bisacsh 
650 6 |a Analyse numerique. 
650 6 |a Matrices. 
650 0 |a Numerical analysis. 
650 0 |a Matrices. 
655 7 |a Electronic books.   |2 local 
700 1 |a Meurant, Gerard A. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/31156/ 
945 |a Project MUSE - Custom Collection