Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) /
This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compellin...
Autores principales: | , , |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton, N.J. :
Princeton University Press,
[2009]
|
Edición: | Course book. |
Colección: | Book collections on Project MUSE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Frontmatter
- Contents
- Preface
- Chapter 1. Introduction
- Chapter 2. A Background In Conformal Geometry
- Chapter 3. The Foundations Of Quasiconformal Mappings
- Chapter 4. Complex Potentials
- Chapter 5. The Measurable Riemann Mapping Theorem: The Existence Theory Of Quasiconformal Mappings
- Chapter 6. Parameterizing General Linear Elliptic Systems
- Chapter 7. The Concept Of Ellipticity
- Chapter 8. Solving General Nonlinear First-Order Elliptic Systems
- Chapter 9. Nonlinear Riemann Mapping Theorems
- Chapter 10. Conformal Deformations And Beltrami Systems
- Chapter 11. A Quasilinear Cauchy Problem
- Chapter 12. Holomorphic Motions
- Chapter 13. Higher Integrability
- Chapter 14. Lp-Theory Of Beltrami Operators
- Chapter 15. Schauder Estimates For Beltrami Operators
- Chapter 16. Applications To Partial Differential Equations
- Chapter 17. PDEs Not Of Divergence Type: Pucci'S Conjecture
- Chapter 18. Quasiconformal Methods In Impedance Tomography: Calderón's Problem
- Chapter 19. Integral Estimates For The Jacobian
- Chapter 20. Solving The Beltrami Equation: Degenerate Elliptic Case
- Chapter 21. Aspects Of The Calculus Of Variations
- Appendix: Elements Of Sobolev Theory And Function Spaces
- Basic Notation
- Bibliography
- Index.