Cargando…

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) /

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compellin...

Descripción completa

Detalles Bibliográficos
Autores principales: Astala, Kari (Autor), Martin, Gaven (Autor), Iwaniec, Tadeusz (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, [2009]
Edición:Course book.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_31142
003 MdBmJHUP
005 20230905043306.0
006 m o d
007 cr||||||||nn|n
008 151027s2009 nyu o 00 0 eng d
020 |a 9781400830114 
020 |z 9780691137773 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Astala, Kari,  |e author. 
245 1 0 |a Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) /   |c Kari Astala, Tadeusz Iwaniec, Gaven Martin. 
250 |a Course book. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c [2009] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©[2009] 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton Mathematical Series ;  |v 48 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t Chapter 1. Introduction --  |t Chapter 2. A Background In Conformal Geometry --  |t Chapter 3. The Foundations Of Quasiconformal Mappings --  |t Chapter 4. Complex Potentials --  |t Chapter 5. The Measurable Riemann Mapping Theorem: The Existence Theory Of Quasiconformal Mappings --  |t Chapter 6. Parameterizing General Linear Elliptic Systems --  |t Chapter 7. The Concept Of Ellipticity --  |t Chapter 8. Solving General Nonlinear First-Order Elliptic Systems --  |t Chapter 9. Nonlinear Riemann Mapping Theorems --  |t Chapter 10. Conformal Deformations And Beltrami Systems --  |t Chapter 11. A Quasilinear Cauchy Problem --  |t Chapter 12. Holomorphic Motions --  |t Chapter 13. Higher Integrability --  |t Chapter 14. Lp-Theory Of Beltrami Operators --  |t Chapter 15. Schauder Estimates For Beltrami Operators --  |t Chapter 16. Applications To Partial Differential Equations --  |t Chapter 17. PDEs Not Of Divergence Type: Pucci'S Conjecture --  |t Chapter 18. Quasiconformal Methods In Impedance Tomography: Calderón's Problem --  |t Chapter 19. Integral Estimates For The Jacobian --  |t Chapter 20. Solving The Beltrami Equation: Degenerate Elliptic Case --  |t Chapter 21. Aspects Of The Calculus Of Variations --  |t Appendix: Elements Of Sobolev Theory And Function Spaces --  |t Basic Notation --  |t Bibliography --  |t Index. 
520 |a This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Quasiconformal mappings.  |2 fast  |0 (OCoLC)fst01085480 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Differential equations, Elliptic.  |2 fast  |0 (OCoLC)fst00893458 
650 7 |a MATHEMATICS / Complex Analysis.  |2 bisacsh 
650 0 |a Quasiconformal mappings. 
650 0 |a Mathematics  |v Complex Analysis. 
650 0 |a Differential equations, Elliptic. 
655 7 |a Electronic books.   |2 local 
700 1 |a Martin, Gaven,  |e author. 
700 1 |a Iwaniec, Tadeusz,  |e author. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/31142/ 
945 |a Project MUSE - Custom Collection