Cargando…

Outer Billiards on Kites (AM-171) /

"Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B.H. Neumann introduced this system in the 1950s, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problem...

Descripción completa

Detalles Bibliográficos
Autor principal: Schwartz, Richard Evan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2009.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_31139
003 MdBmJHUP
005 20230905043306.0
006 m o d
007 cr||||||||nn|n
008 100402s2009 nju o 00 0 eng d
020 |a 9781400831975 
020 |z 9780691142487 
020 |z 9780691142494 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Schwartz, Richard Evan. 
245 1 0 |a Outer Billiards on Kites (AM-171) /   |c Richard Evan Schwartz. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2009. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2009. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 171 
505 0 |a Introduction -- The arithmetic graph -- The hexagrid theorem -- Period copying -- Proof of the erratic orbits theorem -- The master picture theorem -- The pinwheel lemma -- The torus lemma -- The strip functions -- Proof of the master picture theorem -- Proof of the embedding theorem -- Extension and symmetry -- Proof of hexagrid theorem I -- The barrier theorem -- Proof of hexagrid theorem II -- Proof of the intersection lemma -- Diophantine approximation -- The diophantine lemma -- The decomposition theorem -- Existence of strong sequences -- Structure of the inferior and superior sequences -- The fundamental orbit -- The comet theorem -- Dynamical consequences -- Geometric consequences -- Proof of the copy theorem -- Pivot arcs in the even case -- Proof of the pivot theorem -- Proof of the period theorem -- Hovering components -- Proof of the low vertex theorem -- Structure of periodic points -- Self-similarity -- General orbits on kites -- General quadrilaterals. 
520 |a "Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B.H. Neumann introduced this system in the 1950s, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system."--Publisher website 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Transformations (Mathematics)  |2 fast  |0 (OCoLC)fst01154653 
650 7 |a Singularities (Mathematics)  |2 fast  |0 (OCoLC)fst01119502 
650 7 |a Hyperbolic spaces.  |2 fast  |0 (OCoLC)fst00965723 
650 7 |a Geometry, Plane.  |2 fast  |0 (OCoLC)fst00940930 
650 7 |a Geometry, Modern  |x Plane.  |2 fast  |0 (OCoLC)fst00940926 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Non-Euclidean.  |2 bisacsh 
650 6 |a Geometrie plane. 
650 6 |a Singularites (Mathematiques) 
650 6 |a Espaces hyperboliques. 
650 0 |a Geometry, Modern  |x Plane. 
650 0 |a Geometry, Plane. 
650 0 |a Transformations (Mathematics) 
650 0 |a Singularities (Mathematics) 
650 0 |a Hyperbolic spaces. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/31139/ 
945 |a Project MUSE - Custom Collection