Cargando…

Modeling with Data : Tools and Techniques for Scientific Computing /

Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results....

Descripción completa

Detalles Bibliográficos
Autor principal: Klemens, Ben
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2009.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_31099
003 MdBmJHUP
005 20230905043303.0
006 m o d
007 cr||||||||nn|n
008 080627s2009 nju o 00 0 eng d
010 |z  2008028341 
020 |a 9781400828746 
020 |z 9780691133140 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Klemens, Ben. 
245 1 0 |a Modeling with Data :   |b Tools and Techniques for Scientific Computing /   |c Ben Klemens. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2009. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2009. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Preliminaries; CONTENTS; Chapter 1. Statistics in the modern day; Chapter 2. C; Chapter 3. Databases; Chapter 4. Matrices and models; Chapter 5. Graphics; Chapter 6. More coding tools; Chapter 7. Distributions for description; Chapter 8. Linear projections; Chapter 9. Hypothesis testing with the CLT; Chapter 10. Maximum likelihood estimation; Chapter 11. Monte Carlo; Appendix A: Environments and makefiles; Appendix B: Text processing; Appendix C: Glossary; Bibliography; Index. 
520 |a Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads o. 
588 |a Description based on print version record. 
650 7 |a Mathematical statistics.  |2 fast  |0 (OCoLC)fst01012127 
650 7 |a Mathematical models.  |2 fast  |0 (OCoLC)fst01012085 
650 7 |a COMPUTERS  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a mathematical models.  |2 aat 
650 6 |a Modeles mathematiques. 
650 0 |a Mathematical models. 
650 0 |a Mathematical statistics. 
655 0 |a Electronic book. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/31099/ 
945 |a Project MUSE - Custom Collection