Cargando…

Selfsimilar Processes /

The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the...

Descripción completa

Detalles Bibliográficos
Autor principal: Embrechts, Paul, 1953-
Otros Autores: Maejima, Makoto
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 2002.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_31076
003 MdBmJHUP
005 20230905043302.0
006 m o d
007 cr||||||||nn|n
008 030515s2002 nju o 00 0 eng d
020 |a 9781400825103 
020 |z 9781400814244 
020 |z 9781400815746 
020 |z 9780691096278 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Embrechts, Paul,  |d 1953- 
245 1 0 |a Selfsimilar Processes /   |c Paul Embrechts and Makoto Maejima. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2002. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2002. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Princeton series in applied mathematics 
505 0 |a Contents; Preface; Chapter 1. Introduction; Chapter 2. Some Historical Background; Chapter 3. Selfsimilar Processes with Stationary Increments; Chapter 4. Fractional Brownian Motion; Chapter 5. Selfsimilar Processes with Independent Increments; Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments; Chapter 7. Simulation of Selfsimilar Processes; Chapter 8. Statistical Estimation; Chapter 9. Extensions; References; Index. 
520 |a The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity t. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Self-similar processes.  |2 fast  |0 (OCoLC)fst01111938 
650 7 |a Distribution (Probability theory)  |2 fast  |0 (OCoLC)fst00895600 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Stochastic Processes.  |2 bisacsh 
650 7 |a distribution (statistics-related concept)  |2 aat 
650 6 |a Distribution (Theorie des probabilites) 
650 6 |a Processus autosimilaires. 
650 0 |a Distribution (Probability theory) 
650 0 |a Self-similar processes. 
655 7 |a Electronic books.   |2 local 
700 1 |a Maejima, Makoto. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/31076/ 
945 |a Project MUSE - Custom Collection