Cargando…

Elliptic Tales : Curves, Counting, and Number Theory

Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics--the Birch and Swinnerton-Dyer Conjecture. The Clay Mathematics Institute is offering a prize of 1 million to anyone who can discover a general solut...

Descripción completa

Detalles Bibliográficos
Autor principal: Ash, Avner, 1949-
Otros Autores: Gross, Robert
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2012.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30973
003 MdBmJHUP
005 20230905043255.0
006 m o d
007 cr||||||||nn|n
008 120123s2012 nju o 00 0 eng d
010 |z  2011044712 
020 |a 9781400841714 
020 |z 9780691163505 
020 |z 9780691151199 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Ash, Avner,  |d 1949- 
245 1 0 |a Elliptic Tales :   |b Curves, Counting, and Number Theory 
264 1 |a Princeton :  |b Princeton University Press,  |c 2012. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2012. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Title; Copyright; Contents; Preface; Acknowledgments; Prologue; PART I: DEGREE; Chapter 1 Degree of a Curve; 1. Greek Mathematics; 2. Degree; 3. Parametric Equations; 4. Our Two Definitions of Degree Clash; Chapter 2 Algebraic Closures; 1. Square Roots of Minus One; 2. Complex Arithmetic; 3. Rings and Fields; 4. Complex Numbers and Solving Equations; 5. Congruences; 6. Arithmetic Modulo a Prime; 7. Algebraic Closure; Chapter 3 The Projective Plane; 1. Points at Infinity; 2. Projective Coordinates on a Line; 3. Projective Coordinates on a Plane. 
505 0 |a 4. Algebraic Curves and Points at Infinity5. Homogenization of Projective Curves; 6. Coordinate Patches; Chapter 4 Multiplicities and Degree; 1. Curves as Varieties; 2. Multiplicities; 3. Intersection Multiplicities; 4. Calculus for Dummies; Chapter 5 Bezout's Theorem; 1. A Sketch of the Proof; 2. An Illuminating Example; PART II: ELLIPTIC CURVES AND ALGEBRA; Chapter 6 Transition to Elliptic Curves; Chapter 7 Abelian Groups; 1. How Big Is Infinity?; 2. What Is an Abelian Group?; 3. Generations; 4. Torsion; 5. Pulling Rank; Appendix: An Interesting Example of Rank and Torsion. 
505 0 |a Chapter 8 Nonsingular Cubic Equations1. The Group Law; 2. Transformations; 3. The Discriminant; 4. Algebraic Details of the Group Law; 5. Numerical Examples; 6. Topology; 7. Other Important Facts about Elliptic Curves; 8. Two Numerical Examples; Chapter 9 Singular Cubics; 1. The Singular Point and the Group Law; 2. The Coordinates of the Singular Point; 3. Additive Reduction; 4. Split Multiplicative Reduction; 5. Nonsplit Multiplicative Reduction; 6. Counting Points; 7. Conclusion; Appendix A: Changing the Coordinates of the Singular Point; Appendix B: Additive Reduction in Detail. 
505 0 |a Appendix C: Split Multiplicative Reduction in DetailAppendix D: Nonsplit Multiplicative Reduction in Detail; Chapter 10 Elliptic Curves over Q; 1. The Basic Structure of the Group; 2. Torsion Points; 3. Points of Infinite Order; 4. Examples; PART III: ELLIPTIC CURVES AND ANALYSIS; Chapter 11 Building Functions; 1. Generating Functions; 2. Dirichlet Series; 3. The Riemann Zeta-Function; 4. Functional Equations; 5. Euler Products; 6. Build Your Own Zeta-Function; Chapter 12 Analytic Continuation; 1. A Difference that Makes a Difference; 2. Taylor Made; 3. Analytic Functions. 
505 0 |a 4. Analytic Continuation5. Zeroes, Poles, and the Leading Coefficient; Chapter 13 L-functions; 1. A Fertile Idea; 2. The Hasse-Weil Zeta-Function; 3. The L-Function of a Curve; 4. The L-Function of an Elliptic Curve; 5. Other L-Functions; Chapter 14 Surprising Properties of L-functions; 1. Compare and Contrast; 2. Analytic Continuation; 3. Functional Equation; Chapter 15 The Conjecture of Birch and Swinnerton-Dyer; 1. How Big Is Big?; 2. Influences of the Rank on the Np's; 3. How Small Is Zero?; 4. The BSD Conjecture; 5. Computational Evidence for BSD; 6. The Congruent Number Problem. 
520 |a Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics--the Birch and Swinnerton-Dyer Conjecture. The Clay Mathematics Institute is offering a prize of 1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem. The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from so. 
588 |a Description based on print version record. 
650 7 |a Number theory.  |2 fast  |0 (OCoLC)fst01041214 
650 7 |a Elliptic functions.  |2 fast  |0 (OCoLC)fst00908173 
650 7 |a Curves, Elliptic.  |2 fast  |0 (OCoLC)fst00885455 
650 7 |a MATHEMATICS  |x Algebra  |x Abstract.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Complex Analysis.  |2 bisacsh 
650 6 |a Theorie des nombres. 
650 6 |a Courbes elliptiques. 
650 6 |a Fonctions elliptiques. 
650 0 |a Number theory. 
650 0 |a Curves, Elliptic. 
650 0 |a Elliptic functions. 
655 7 |a Electronic books.   |2 local 
700 1 |a Gross, Robert. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30973/ 
945 |a Project MUSE - Custom Collection