Cargando…

Spatiotemporal Data Analysis /

"A severe thunderstorm morphs into a tornado that cuts a swath of destruction through Oklahoma. How do we study the storm's mutation into a deadly twister? Avian flu cases are reported in China. How do we characterize the spread of the flu, potentially preventing an epidemic? The way to an...

Descripción completa

Detalles Bibliográficos
Autor principal: Eshel, Gidon, 1958- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2012]
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30972
003 MdBmJHUP
005 20230905043255.0
006 m o d
007 cr||||||||nn|n
008 131104s2012 nju o 00 0 eng d
020 |a 9781400840632 
020 |z 9780691128917 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Eshel, Gidon,  |d 1958-  |e author. 
245 1 0 |a Spatiotemporal Data Analysis /   |c Gidon Eshel. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2012] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©[2012] 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Spatiotemporal Data Analysis; Title; Copyright; Dedication; Contents; Preface; Acknowledgments; PART 1. FOUNDATIONS; ONE Introduction and Motivation; TWO Notation and Basic Operations; THREE Matrix Properties, Fundamental Spaces, Orthogonality; 3.1 Vector Spaces; 3.2 Matrix Rank; 3.3 Fundamental Spaces Associated with AÎR M x N; 3.4 Gram-Schmidt Orthogonalization; 3.5 Summary; FOUR Introduction to Eigenanalysis; 4.1 Preface; 4.2 Eigenanalysis Introduced; 4.3 Eigenanalysis as Spectral Representation; 4.4 Summary; FIVE The Algebraic Operation of SVD; 5.1 SVD Introduced; 5.2 Some Examples. 
505 0 |a 5.3 SVD Applications5.4 Summary; PART 2. METHODS OF DATA ANALYSIS; SIX The Gray World of Practical Data Analysis: An Introduction to Part 2; SEVEN Statistics in Deterministic Sciences: An Introduction; 7.1 Probability Distributions; 7.2 Degrees of Freedom; EIGHT Autocorrelation; 8.1 Theoretical Autocovariance and Autocorrelation Functions of AR(1) and AR(2); 8.2 Acf-Derived Timescale; 8.3 Summary of Chapters 7 and 8; NINE Regression and Least Squares; 9.1 Prologue; 9.2 Setting Up the Problem; 9.3 The Linear System Ax = b; 9.4 Least Squares: The SVD View. 
505 0 |a 9.5 Some Special Problems Giving Rise to Linear Systems9.6 Statistical Issues in Regression Analysis; 9.7 Multidimensional Regression and Linear Model Identification; 9.8 Summary; TEN. THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA; 10.1 Introduction; 10.2 The Forward Problem; 10.3 The Inverse Problem; ELEVEN. EMPIRICAL ORTHOGONAL FUNCTIONS; 11.1 Introduction; 11.2 Data Matrix Structure Convention; 11.3 Reshaping Multidimensional Data Sets for EOF Analysis; 11.4 Forming Anomalies and Removing Time Mean; 11.5 Missing Values, Take 1; 11.6 Choosing and Interpreting the Covariability Matrix. 
505 0 |a 11.7 Calculating the EOFs11.8 Missing Values, Take 2; 11.9 Projection Time Series, the Principal Components; 11.10 A Final Realistic and Slightly Elaborate Example: Southern New York State Land Surface Temperature; 11.11 Extended EOF Analysis, EEOF; 11.12 Summary; TWELVE. THE SVD ANALYSIS OF TWO FIELDS; 12.1 A Synthetic Example; 12.2 A Second Synthetic Example; 12.3 A Real Data Example; 12.4 EOFs as a Prefilter to SVD; 12.5 summary; THIRTEEN. SUGGESTED HOMEWORK; 13.1 Homework 1, Corresponding to Chapter 3; 13.2 Homework 2, Corresponding to Chapter 3. 
505 0 |a 13.3 Homework 3, Corresponding to Chapter 313.4 Homework 4, Corresponding to Chapter 4; 13.5 Homework 5, Corresponding to Chapter 5; 13.6 Homework 6, Corresponding to Chapter 8; 13.7 A Suggested Midterm Exam; 13.8 A Suggested Final Exam; Index. 
520 |a "A severe thunderstorm morphs into a tornado that cuts a swath of destruction through Oklahoma. How do we study the storm's mutation into a deadly twister? Avian flu cases are reported in China. How do we characterize the spread of the flu, potentially preventing an epidemic? The way to answer important questions like these is to analyze the spatial and temporal characteristics--origin, rates, and frequencies--of these phenomena. This comprehensive text introduces advanced undergraduate students, graduate students, and researchers to the statistical and algebraic methods used to analyze spatiotemporal data in a range of fields, including climate science, geophysics, ecology, astrophysics, and medicine. Gidon Eshel begins with a concise yet detailed primer on linear algebra, providing readers with the mathematical foundations needed for data analysis. He then fully explains the theory and methods for analyzing spatiotemporal data, guiding readers from the basics to the most advanced applications. This self-contained, practical guide to the analysis of multidimensional data sets features a wealth of real-world examples as well as sample homework exercises and suggested exams"--  |c Provided by publisher 
588 |a Description based on print version record. 
650 7 |a Spatial analysis (Statistics)  |2 fast  |0 (OCoLC)fst01128784 
650 7 |a SCIENCE  |x Earth Sciences  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a spatial analysis.  |2 aat 
650 6 |a Analyse spatiale (Statistique) 
650 0 |a Spatial analysis (Statistics) 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30972/ 
945 |a Project MUSE - Custom Collection