Chance in Biology : Using Probability to Explore Nature /
Through the application of probability theory, this text makes predictions about how plants and animals work in a stochastic universe. It uses real-world examples, numerous illustrations and chapter summaries.
Autores principales: | , |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton :
Princeton University Press,
2000.
|
Colección: | Book collections on Project MUSE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine derived contents note: Table of contents for Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines.
- Bibliographic record and links to related information available from the Library of Congress catalog
- Information from electronic data provided by the publisher. May be incomplete or contain other coding.
- Preface xi
- 1 The Nature of Chance 3
- 1.1 Silk, Strength, and Statistics 3
- 1.2 What Is Certain?7
- 1.3 Determinism versus Chance 8
- 1.4 Chaos 9
- 1.5 A Road Map 11
- 2 Rules of Disorder 12
- 2.1 Events, Experiments, and Outcomes 12
- 2.1.1 Sarcastic Fish 13
- 2.1.2 Bipolar Smut 14
- 2.1.3 Discrete versus Continuous 17
- 2.1.4 Drawing Pictures 18
- 2.2 Probability 19
- 2.3 Rules and Tools 20
- 2.3.1 Events Are the Sum of Their Parts 20
- 2.3.2 The Union of Sets 21
- 2.3.3 The Probability of a Union 23
- 2.3.4 Probability and the Intersection of Sets 24
- 2.3.5 The Complement of a Set 25
- 2.3.6 Additional Information and Conditional Probabilities 27
- 2.3.7 Bayes' Formula 29
- 2.3.8 AIDS and Bayes' Formula 30
- 2.3.9 The Independence of Sets 32
- 2.4 Probability Distributions 34
- 2.5 Summary 37
- 2.6 Problems 37
- 3 Discrete Patterns of Disorder 40
- 3.1 Random Variables 40
- 3.2 Expectations Defined 42
- 3.3 The Variance 46
- 3.4 The Trials of Bernoulli 48
- 3.5 Beyond 0 's and 1 's 50
- 3.6 Bernoulli = Binomial 51
- 3.6.1 Permutations and Combinations 53
- 3.7 Waiting Forever 60
- 3.8 Summary 65
- 3.9 Problems 66
- 4 Continuous Patterns of Disorder 68
- 4.1 The Uniform Distribution 69
- 4.1.1 The Cumulative Probability Distribution 70
- 4.1.2 The Probability Density Function 71
- 4.1.3 The Expectation 74
- 4.1.4 The Variance 76
- 4.2 The Shape of Distributions 77
- 4.3 The Normal Curve 79
- 4.4 Why Is the Normal Curve Normal?82
- 4.5 The Cumulative Normal Curve 84
- 4.6 The Standard Error 86
- 4.7 A Brief Detour to Statistics 89
- 4.8 Summary 92
- 4.9 Problems 93
- 4.10 Appendix 1:The Normal Distribution 94
- 4.11 Appendix 2:The Central Limit Theorem 98
- 5 Random Walks 106
- 5.1 The Motion of Molecules 106
- 5.2 Rules of a Random Walk 110
- 5.2.1 The Average 110
- 5.2.2 The Variance 112
- 5.2.3 Diffusive Speed 115
- 5.3 Diffusion and the Real World 115
- 5.4 A Digression on the Binomial Theorem 117
- 5.5 The Biology of Diffusion 119
- 5.6 Fick's Equation 123
- 5.7 A Use of Fick's Equation: Limits to Size 126
- 5.8 Receptors and Channels 130
- 5.9 Summary 136
- 5.10 Problems 137
- 6 More Random Walks 139
- 6.1 Diffusion to Capture 139
- 6.1.1 Two Absorbing Walls 142
- 6.1.2 One Reflecting Wall 144
- 6.2 Adrift at Sea: Turbulent Mixing of Plankton 145
- 6.3 Genetic Drift 148
- 6.3.1 A Genetic Diffusion Coefficient 149
- 6.3.2 Drift and Fixation 151
- 6.4 Genetic Drift and Irreproducible Pigs 154
- 6.5 The Biology of Elastic Materials 156
- 6.5.1 Elasticity Defined 156
- 6.5.2 Biological Rubbers 157
- 6.5.3 The Limits to Energy Storage 161
- 6.6 Random Walks in Three Dimensions 163
- 6.7 Random Protein Con .gurations 167
- 6.8 A Segue to Thermodynamics 169
- 6.9 Summary 173
- 6.10 Problems 173
- 7 The Statistics of Extremes 175
- 7.1 The Danger of Cocktail Parties 175
- 7.2 Calculating the Maximum 182
- 7.3 Mean and Modal Maxima 185
- 7.4 Ocean Waves 186
- 7.5 The Statistics of Extremes 189
- 7.6 Life and Death in Rhode Island 194
- 7.7 Play Ball!196
- 7.8 A Note on Extrapolation 204
- 7.9 Summary 206
- 7.10 Problems 206
- 8 Noise and Perception 208
- 8.1 Noise Is Inevitable 208
- 8.2 Dim Lights and Fuzzy Images 212
- 8.3 The Poisson Distribution 213
- 8.4 Bayes' Formula and the Design of Rods 218
- 8.5 Designing Error-Free Rods 219
- 8.5.1 The Origin of Membrane Potentials 220
- 8.5.2 Membrane Potential in Rod Cells 222
- 8.6 Noise and Ion Channels 225
- 8.6.1 An Electrical Analog 226
- 8.6.2 Calculating the Membrane Voltage 227
- 8.6.3 Calculating the Size 229
- 8.7 Noise and Hearing 230
- 8.7.1 Fluctuations in Pressure 231
- 8.7.2 The Rate of Impact 232
- 8.7.3 Fluctuations in Velocity 233
- 8.7.4 Fluctuations in Momentum 235
- 8.7.5 The Standard Error of Pressure 235
- 8.7.6 Quantifying the Answer 236
- 8.8 The Rest of the Story 239
- 8.9 Stochastic Resonance 239
- 8.9.1 The Utility of Noise 239
- 8.9.2 Nonlinear Systems 242
- 8.9.3 The History of Stochastic Resonance 244
- 8.10 Summary 245
- 8.11 A Word at the End 246
- 8.12 A Problem 247
- 8.13 Appendix 248
- 9 The Answers 250
- 9.1 Chapter 2 250
- 9.2 Chapter 3 256
- 9.3 Chapter 4 262
- 9.4 Chapter 5 266
- 9.5 Chapter 6 269
- 9.6 Chapter 7 271
- 9.7 Chapter 8 273
- Symbol Index 279
- Author Index 284
- Subject Index 286
- Library of Congress subject headings for this publication: Biomathematics, Probabilities.