Cargando…

Chance in Biology : Using Probability to Explore Nature /

Through the application of probability theory, this text makes predictions about how plants and animals work in a stochastic universe. It uses real-world examples, numerous illustrations and chapter summaries.

Detalles Bibliográficos
Autores principales: Denny, Mark W., 1951- (Autor), Gaines, Steven, 1951- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2000.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30969
003 MdBmJHUP
005 20230905043255.0
006 m o d
007 cr||||||||nn|n
008 000322s2000 nju o 00 0 eng d
020 |a 9781400841400 
020 |z 9780691094946 
020 |z 9780691005218 
035 |a (OCoLC)769188188 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Denny, Mark W.,  |d 1951-  |e author. 
245 1 0 |a Chance in Biology :   |b Using Probability to Explore Nature /   |c Mark Denny and Steven Gaines. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2000. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 2015 
264 4 |c ©2000. 
300 |a 1 online resource (416 pages):   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Machine derived contents note: Table of contents for Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. -- Bibliographic record and links to related information available from the Library of Congress catalog -- Information from electronic data provided by the publisher. May be incomplete or contain other coding. -- Preface xi -- 1 The Nature of Chance 3 -- 1.1 Silk, Strength, and Statistics 3 -- 1.2 What Is Certain?7 -- 1.3 Determinism versus Chance 8 -- 1.4 Chaos 9 -- 1.5 A Road Map 11 -- 2 Rules of Disorder 12 -- 2.1 Events, Experiments, and Outcomes 12 -- 2.1.1 Sarcastic Fish 13 -- 2.1.2 Bipolar Smut 14 -- 2.1.3 Discrete versus Continuous 17 -- 2.1.4 Drawing Pictures 18 -- 2.2 Probability 19 -- 2.3 Rules and Tools 20 -- 2.3.1 Events Are the Sum of Their Parts 20 -- 2.3.2 The Union of Sets 21 -- 2.3.3 The Probability of a Union 23 -- 2.3.4 Probability and the Intersection of Sets 24 -- 2.3.5 The Complement of a Set 25 -- 2.3.6 Additional Information and Conditional Probabilities 27 -- 2.3.7 Bayes' Formula 29 -- 2.3.8 AIDS and Bayes' Formula 30 -- 2.3.9 The Independence of Sets 32 -- 2.4 Probability Distributions 34 -- 2.5 Summary 37 -- 2.6 Problems 37 -- 3 Discrete Patterns of Disorder 40 -- 3.1 Random Variables 40 -- 3.2 Expectations Defined 42 -- 3.3 The Variance 46 -- 3.4 The Trials of Bernoulli 48 -- 3.5 Beyond 0 's and 1 's 50 -- 3.6 Bernoulli = Binomial 51 -- 3.6.1 Permutations and Combinations 53 -- 3.7 Waiting Forever 60 -- 3.8 Summary 65 -- 3.9 Problems 66 -- 4 Continuous Patterns of Disorder 68 -- 4.1 The Uniform Distribution 69 -- 4.1.1 The Cumulative Probability Distribution 70 -- 4.1.2 The Probability Density Function 71 -- 4.1.3 The Expectation 74 -- 4.1.4 The Variance 76 -- 4.2 The Shape of Distributions 77 -- 4.3 The Normal Curve 79 -- 4.4 Why Is the Normal Curve Normal?82 -- 4.5 The Cumulative Normal Curve 84 -- 4.6 The Standard Error 86 -- 4.7 A Brief Detour to Statistics 89 -- 4.8 Summary 92 -- 4.9 Problems 93 -- 4.10 Appendix 1:The Normal Distribution 94 -- 4.11 Appendix 2:The Central Limit Theorem 98 -- 5 Random Walks 106 -- 5.1 The Motion of Molecules 106 -- 5.2 Rules of a Random Walk 110 -- 5.2.1 The Average 110 -- 5.2.2 The Variance 112 -- 5.2.3 Diffusive Speed 115 -- 5.3 Diffusion and the Real World 115 -- 5.4 A Digression on the Binomial Theorem 117 -- 5.5 The Biology of Diffusion 119 -- 5.6 Fick's Equation 123 -- 5.7 A Use of Fick's Equation: Limits to Size 126 -- 5.8 Receptors and Channels 130 -- 5.9 Summary 136 -- 5.10 Problems 137 -- 6 More Random Walks 139 -- 6.1 Diffusion to Capture 139 -- 6.1.1 Two Absorbing Walls 142 -- 6.1.2 One Reflecting Wall 144 -- 6.2 Adrift at Sea: Turbulent Mixing of Plankton 145 -- 6.3 Genetic Drift 148 -- 6.3.1 A Genetic Diffusion Coefficient 149 -- 6.3.2 Drift and Fixation 151 -- 6.4 Genetic Drift and Irreproducible Pigs 154 -- 6.5 The Biology of Elastic Materials 156 -- 6.5.1 Elasticity Defined 156 -- 6.5.2 Biological Rubbers 157 -- 6.5.3 The Limits to Energy Storage 161 -- 6.6 Random Walks in Three Dimensions 163 -- 6.7 Random Protein Con .gurations 167 -- 6.8 A Segue to Thermodynamics 169 -- 6.9 Summary 173 -- 6.10 Problems 173 -- 7 The Statistics of Extremes 175 -- 7.1 The Danger of Cocktail Parties 175 -- 7.2 Calculating the Maximum 182 -- 7.3 Mean and Modal Maxima 185 -- 7.4 Ocean Waves 186 -- 7.5 The Statistics of Extremes 189 -- 7.6 Life and Death in Rhode Island 194 -- 7.7 Play Ball!196 -- 7.8 A Note on Extrapolation 204 -- 7.9 Summary 206 -- 7.10 Problems 206 -- 8 Noise and Perception 208 -- 8.1 Noise Is Inevitable 208 -- 8.2 Dim Lights and Fuzzy Images 212 -- 8.3 The Poisson Distribution 213 -- 8.4 Bayes' Formula and the Design of Rods 218 -- 8.5 Designing Error-Free Rods 219 -- 8.5.1 The Origin of Membrane Potentials 220 -- 8.5.2 Membrane Potential in Rod Cells 222 -- 8.6 Noise and Ion Channels 225 -- 8.6.1 An Electrical Analog 226 -- 8.6.2 Calculating the Membrane Voltage 227 -- 8.6.3 Calculating the Size 229 -- 8.7 Noise and Hearing 230 -- 8.7.1 Fluctuations in Pressure 231 -- 8.7.2 The Rate of Impact 232 -- 8.7.3 Fluctuations in Velocity 233 -- 8.7.4 Fluctuations in Momentum 235 -- 8.7.5 The Standard Error of Pressure 235 -- 8.7.6 Quantifying the Answer 236 -- 8.8 The Rest of the Story 239 -- 8.9 Stochastic Resonance 239 -- 8.9.1 The Utility of Noise 239 -- 8.9.2 Nonlinear Systems 242 -- 8.9.3 The History of Stochastic Resonance 244 -- 8.10 Summary 245 -- 8.11 A Word at the End 246 -- 8.12 A Problem 247 -- 8.13 Appendix 248 -- 9 The Answers 250 -- 9.1 Chapter 2 250 -- 9.2 Chapter 3 256 -- 9.3 Chapter 4 262 -- 9.4 Chapter 5 266 -- 9.5 Chapter 6 269 -- 9.6 Chapter 7 271 -- 9.7 Chapter 8 273 -- Symbol Index 279 -- Author Index 284 -- Subject Index 286 -- Library of Congress subject headings for this publication: Biomathematics, Probabilities. 
520 |a Through the application of probability theory, this text makes predictions about how plants and animals work in a stochastic universe. It uses real-world examples, numerous illustrations and chapter summaries. 
546 |a English. 
588 |a Description based on print version record. 
650 7 |a Probabilities.  |2 fast  |0 (OCoLC)fst01077737 
650 7 |a Biomathematics.  |2 fast  |0 (OCoLC)fst00832555 
650 7 |a SCIENCE  |x Life Sciences  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Biology.  |2 bisacsh 
650 7 |a NATURE  |x Reference.  |2 bisacsh 
650 7 |a probability.  |2 aat 
650 6 |a Probabilites. 
650 6 |a Biomathematiques. 
650 0 |a Probabilities. 
650 0 |a Biomathematics. 
655 7 |a Electronic books.   |2 local 
700 1 |a Gaines, Steven,  |d 1951-  |e author. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30969/ 
945 |a Project MUSE - Custom Collection 
945 |a Project MUSE - Archive Complete Supplement III 
945 |a Project MUSE - Archive Ecology and Evolution Supplement II