Classical Mathematical Logic : The Semantic Foundations of Logic /
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not...
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton :
Princeton University Press,
2006.
|
Colección: | Book collections on Project MUSE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Classical propositional logic
- Abstracting and axiomatizing classical propositional logic
- The language of predicate logic
- The semantics of classical predicate logic
- Substitutions and equivalences
- Equality
- Examples of formalization
- Functions
- The abstraction of models
- Axiomatizing classical predicate logic
- The number of objects in the universe of a model
- Formalizing group theory
- Linear orderings
- Second-order classical predicate logic
- The natural numbers
- The integers and rationals
- The real numbers
- One-dimensional geometry
- Two-dimensional Euclidean geometry
- Translations within classical predicate logic
- Classical predicate logic with non-referring names
- The Liar paradox
- On mathematical logic and mathematics
- Appendix: The completeness of classical predicate logic proved by Gödel's Method.