Cargando…

Classical Mathematical Logic : The Semantic Foundations of Logic /

In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not...

Descripción completa

Detalles Bibliográficos
Autor principal: Epstein, Richard L., 1947- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2006.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30966
003 MdBmJHUP
005 20230905043255.0
006 m o d
007 cr||||||||nn|n
008 111226s2006 nju o 00 0 eng d
010 |z  2005055239 
020 |a 9781400841554 
020 |z 0691123004 
020 |z 9780691123004 
020 |z 1400841550 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Epstein, Richard L.,  |d 1947-  |e author. 
245 1 0 |a Classical Mathematical Logic :   |b The Semantic Foundations of Logic /   |c Richard L. Epstein ; with contributions by Lesław W. Szczerba. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2006. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2006. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Classical propositional logic -- Abstracting and axiomatizing classical propositional logic -- The language of predicate logic -- The semantics of classical predicate logic -- Substitutions and equivalences -- Equality -- Examples of formalization -- Functions -- The abstraction of models -- Axiomatizing classical predicate logic -- The number of objects in the universe of a model -- Formalizing group theory -- Linear orderings -- Second-order classical predicate logic -- The natural numbers -- The integers and rationals -- The real numbers -- One-dimensional geometry -- Two-dimensional Euclidean geometry -- Translations within classical predicate logic -- Classical predicate logic with non-referring names -- The Liar paradox -- On mathematical logic and mathematics -- Appendix: The completeness of classical predicate logic proved by Gödel's Method. 
520 |a In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proo. 
588 |a Description based on print version record. 
650 1 7 |a Semantiek.  |2 gtt 
650 1 7 |a Wiskundige logica.  |2 gtt 
650 7 |a Philosophische Semantik  |2 gnd 
650 7 |a Mathematische Logik  |2 gnd 
650 7 |a Semantics (Philosophy)  |2 fast  |0 (OCoLC)fst01112094 
650 7 |a Logic, Symbolic and mathematical.  |2 fast  |0 (OCoLC)fst01002068 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 6 |a Semantique (Philosophie) 
650 6 |a Logique symbolique et mathematique. 
650 0 |a Semantics (Philosophy) 
650 0 |a Logic, Symbolic and mathematical. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30966/ 
945 |a Project MUSE - Custom Collection