|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
musev2_30966 |
003 |
MdBmJHUP |
005 |
20230905043255.0 |
006 |
m o d |
007 |
cr||||||||nn|n |
008 |
111226s2006 nju o 00 0 eng d |
010 |
|
|
|z 2005055239
|
020 |
|
|
|a 9781400841554
|
020 |
|
|
|z 0691123004
|
020 |
|
|
|z 9780691123004
|
020 |
|
|
|z 1400841550
|
040 |
|
|
|a MdBmJHUP
|c MdBmJHUP
|
100 |
1 |
|
|a Epstein, Richard L.,
|d 1947-
|e author.
|
245 |
1 |
0 |
|a Classical Mathematical Logic :
|b The Semantic Foundations of Logic /
|c Richard L. Epstein ; with contributions by Lesław W. Szczerba.
|
264 |
|
1 |
|a Princeton :
|b Princeton University Press,
|c 2006.
|
264 |
|
3 |
|a Baltimore, Md. :
|b Project MUSE,
|c 0000
|
264 |
|
4 |
|c ©2006.
|
300 |
|
|
|a 1 online resource:
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Classical propositional logic -- Abstracting and axiomatizing classical propositional logic -- The language of predicate logic -- The semantics of classical predicate logic -- Substitutions and equivalences -- Equality -- Examples of formalization -- Functions -- The abstraction of models -- Axiomatizing classical predicate logic -- The number of objects in the universe of a model -- Formalizing group theory -- Linear orderings -- Second-order classical predicate logic -- The natural numbers -- The integers and rationals -- The real numbers -- One-dimensional geometry -- Two-dimensional Euclidean geometry -- Translations within classical predicate logic -- Classical predicate logic with non-referring names -- The Liar paradox -- On mathematical logic and mathematics -- Appendix: The completeness of classical predicate logic proved by Gödel's Method.
|
520 |
|
|
|a In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proo.
|
588 |
|
|
|a Description based on print version record.
|
650 |
1 |
7 |
|a Semantiek.
|2 gtt
|
650 |
1 |
7 |
|a Wiskundige logica.
|2 gtt
|
650 |
|
7 |
|a Philosophische Semantik
|2 gnd
|
650 |
|
7 |
|a Mathematische Logik
|2 gnd
|
650 |
|
7 |
|a Semantics (Philosophy)
|2 fast
|0 (OCoLC)fst01112094
|
650 |
|
7 |
|a Logic, Symbolic and mathematical.
|2 fast
|0 (OCoLC)fst01002068
|
650 |
|
7 |
|a MATHEMATICS
|x Logic.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Infinity.
|2 bisacsh
|
650 |
|
6 |
|a Semantique (Philosophie)
|
650 |
|
6 |
|a Logique symbolique et mathematique.
|
650 |
|
0 |
|a Semantics (Philosophy)
|
650 |
|
0 |
|a Logic, Symbolic and mathematical.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
710 |
2 |
|
|a Project Muse.
|e distributor
|
830 |
|
0 |
|a Book collections on Project MUSE.
|
856 |
4 |
0 |
|z Texto completo
|u https://projectmuse.uam.elogim.com/book/30966/
|
945 |
|
|
|a Project MUSE - Custom Collection
|