Self-Regularity : A New Paradigm for Primal-Dual Interior-Point Algorithms /
Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap b...
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Princeton University Press,
2002.
|
Colección: | Book collections on Project MUSE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface; Acknowledgements; Notation; List of Abbreviations; Chapter 1. Introduction and Preliminaries; Chapter 2. Self-Regular Functions and Their Properties; Chapter 3. Primal-Dual Algorithms for Linear Optimization Based on Self-Regular Proximities; Chapter 4. Interior-Point Methods for Complementarity Problems Based on Self-Regular Proximities; Chapter 5. Primal-Dual Interior-Point Methods for Semidefinite Optimization Based on Self-Regular Proximities; Chapter 6. Primal-Dual Interior-Point Methods for Second-Order Conic Optimization Based on Self-Regular Proximities.