|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
musev2_30745 |
003 |
MdBmJHUP |
005 |
20230905043241.0 |
006 |
m o d |
007 |
cr||||||||nn|n |
008 |
140128s2014 nju o 00 0 eng d |
020 |
|
|
|a 9781400850549
|
020 |
|
|
|z 9780691160757
|
020 |
|
|
|z 9780691160788
|
040 |
|
|
|a MdBmJHUP
|c MdBmJHUP
|
100 |
1 |
|
|a Sogge, Christopher D.
|q (Christopher Donald),
|d 1960-
|e author.
|
245 |
1 |
0 |
|a Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188) /
|c Christopher D. Sogge.
|
264 |
|
1 |
|a Princeton :
|b Princeton University Press,
|c 2014.
|
264 |
|
3 |
|a Baltimore, Md. :
|b Project MUSE,
|c 0000
|
264 |
|
4 |
|c ©2014.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Annals of mathematics studies ;
|v number 188
|
505 |
0 |
|
|a A review : the Laplacian and the d'Alembertian -- Geodesics and the Hadamard paramatrix -- The sharp Weyl formula -- Stationary phase and microlocal analysis -- Improved spectral asymptotics and periodic geodesics -- Classical and quantum ergodicity -- Appendix.
|
520 |
|
|
|a Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula.
|
546 |
|
|
|a In English.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
7 |
|a Laplacian operator.
|2 fast
|0 (OCoLC)fst00992600
|
650 |
|
7 |
|a Eigenfunctions.
|2 fast
|0 (OCoLC)fst00904026
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
6 |
|a Fonctions propres.
|
650 |
|
6 |
|a Laplacien.
|
650 |
|
4 |
|a Mathematik.
|
650 |
|
4 |
|a Mathematics.
|
650 |
|
4 |
|a Laplacian operator.
|
650 |
|
4 |
|a Eigenfunctions.
|
650 |
|
4 |
|a Analysis.
|
650 |
|
0 |
|a Eigenfunctions.
|
650 |
|
0 |
|a Laplacian operator.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
710 |
2 |
|
|a Project Muse.
|e distributor
|
830 |
|
0 |
|a Book collections on Project MUSE.
|
880 |
0 |
|
|6 505-00/(S
|a Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 A review: The Laplacian and the d'Alembertian -- 1.1 The Laplacian -- 1.2 Fundamental solutions of the d'Alembertian -- 2 Geodesics and the Hadamard parametrix -- 2.1 Laplace-Beltrami operators -- 2.2 Some elliptic regularity estimates -- 2.3 Geodesics and normal coordinates-a brief review -- 2.4 The Hadamard parametrix -- 3 The sharp Weyl formula -- 3.1 Eigenfunction expansions -- 3.2 Sup-norm estimates for eigenfunctions and spectral clusters -- 3.3 Spectral asymptotics: The sharp Weyl formula -- 3.4 Sharpness: Spherical harmonics -- 3.5 Improved results: The torus -- 3.6 Further improvements: Manifolds with nonpositive curvature -- 4 Stationary phase and microlocal analysis -- 4.1 The method of stationary phase -- 4.2 Pseudodifferential operators -- 4.3 Propagation of singularities and Egorov's theorem -- 4.4 The Friedrichs quantization -- 5 Improved spectral asymptotics and periodic geodesics -- 5.1 Periodic geodesics and trace regularity -- 5.2 Trace estimates -- 5.3 The Duistermaat-Guillemin theorem -- 5.4 Geodesic loops and improved sup-norm estimates -- 6 Classical and quantum ergodicity -- 6.1 Classical ergodicity -- 6.2 Quantum ergodicity -- Appendix -- A.1 The Fourier transform and the spaces S(Rn) and S0(Rn) -- A.2 The spaces D'(Ω) and E'(Ω) -- A.3 Homogeneous distributions -- A.4 Pullbacks of distributions -- A.5 Convolution of distributions -- Notes -- Bibliography -- Index -- Symbol Glossary.
|
856 |
4 |
0 |
|z Texto completo
|u https://projectmuse.uam.elogim.com/book/30745/
|
945 |
|
|
|a Project MUSE - Custom Collection
|