Cargando…

Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188) /

Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an imp...

Descripción completa

Detalles Bibliográficos
Autor principal: Sogge, Christopher D. (Christopher Donald), 1960- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2014.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30745
003 MdBmJHUP
005 20230905043241.0
006 m o d
007 cr||||||||nn|n
008 140128s2014 nju o 00 0 eng d
020 |a 9781400850549 
020 |z 9780691160757 
020 |z 9780691160788 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Sogge, Christopher D.  |q (Christopher Donald),  |d 1960-  |e author. 
245 1 0 |a Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188) /   |c Christopher D. Sogge. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2014. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2014. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v number 188 
505 0 |a A review : the Laplacian and the d'Alembertian -- Geodesics and the Hadamard paramatrix -- The sharp Weyl formula -- Stationary phase and microlocal analysis -- Improved spectral asymptotics and periodic geodesics -- Classical and quantum ergodicity -- Appendix. 
520 |a Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Laplacian operator.  |2 fast  |0 (OCoLC)fst00992600 
650 7 |a Eigenfunctions.  |2 fast  |0 (OCoLC)fst00904026 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 6 |a Fonctions propres. 
650 6 |a Laplacien. 
650 4 |a Mathematik. 
650 4 |a Mathematics. 
650 4 |a Laplacian operator. 
650 4 |a Eigenfunctions. 
650 4 |a Analysis. 
650 0 |a Eigenfunctions. 
650 0 |a Laplacian operator. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
880 0 |6 505-00/(S  |a Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 A review: The Laplacian and the d'Alembertian -- 1.1 The Laplacian -- 1.2 Fundamental solutions of the d'Alembertian -- 2 Geodesics and the Hadamard parametrix -- 2.1 Laplace-Beltrami operators -- 2.2 Some elliptic regularity estimates -- 2.3 Geodesics and normal coordinates-a brief review -- 2.4 The Hadamard parametrix -- 3 The sharp Weyl formula -- 3.1 Eigenfunction expansions -- 3.2 Sup-norm estimates for eigenfunctions and spectral clusters -- 3.3 Spectral asymptotics: The sharp Weyl formula -- 3.4 Sharpness: Spherical harmonics -- 3.5 Improved results: The torus -- 3.6 Further improvements: Manifolds with nonpositive curvature -- 4 Stationary phase and microlocal analysis -- 4.1 The method of stationary phase -- 4.2 Pseudodifferential operators -- 4.3 Propagation of singularities and Egorov's theorem -- 4.4 The Friedrichs quantization -- 5 Improved spectral asymptotics and periodic geodesics -- 5.1 Periodic geodesics and trace regularity -- 5.2 Trace estimates -- 5.3 The Duistermaat-Guillemin theorem -- 5.4 Geodesic loops and improved sup-norm estimates -- 6 Classical and quantum ergodicity -- 6.1 Classical ergodicity -- 6.2 Quantum ergodicity -- Appendix -- A.1 The Fourier transform and the spaces S(Rn) and S0(Rn) -- A.2 The spaces D'(Ω) and E'(Ω) -- A.3 Homogeneous distributions -- A.4 Pullbacks of distributions -- A.5 Convolution of distributions -- Notes -- Bibliography -- Index -- Symbol Glossary. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30745/ 
945 |a Project MUSE - Custom Collection