Cargando…

The Geometry and Topology of Coxeter Groups. (LMS-32) /

"The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidea...

Descripción completa

Detalles Bibliográficos
Autor principal: Davis, Michael, 1949 April 26-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2008.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30688
003 MdBmJHUP
005 20230905043238.0
006 m o d
007 cr||||||||nn|n
008 130102s2008 nju o 00 0 eng d
020 |a 9781400845941 
020 |z 9780691131382 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Davis, Michael,  |d 1949 April 26- 
245 1 4 |a The Geometry and Topology of Coxeter Groups. (LMS-32) /   |c Michael W. Davis. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2008. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2008. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society monographs series ;  |v 32 
500 |a Series numbering from spine. 
505 0 |a Cover; Contents; Preface; Chapter 1 INTRODUCTION AND PREVIEW; 1.1 Introduction; 1.2 A Preview of the Right-Angled Case; Chapter 2 SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY; 2.1 Cayley Graphs and Word Metrics; 2.2 Cayley 2-Complexes; 2.3 Background on Aspherical Spaces; Chapter 3 COXETER GROUPS; 3.1 Dihedral Groups; 3.2 Reflection Systems; 3.3 Coxeter Systems; 3.4 The Word Problem; 3.5 Coxeter Diagrams; Chapter 4 MORE COMBINATORIAL THEORY OF COXETER GROUPS; 4.1 Special Subgroups in Coxeter Groups; 4.2 Reflections; 4.3 The Shortest Element in a Special Coset 
505 0 |a 4.4 Another Characterization of Coxeter Groups4.5 Convex Subsets of W; 4.6 The Element of Longest Length; 4.7 The Letters with Which a Reduced Expression Can End; 4.8 A Lemma of Tits; 4.9 Subgroups Generated by Reflections; 4.10 Normalizers of Special Subgroups; Chapter 5 THE BASIC CONSTRUCTION; 5.1 The Space U; 5.2 The Case of a Pre-Coxeter System; 5.3 Sectors in U; Chapter 6 GEOMETRIC REFLECTION GROUPS; 6.1 Linear Reflections; 6.2 Spaces of Constant Curvature; 6.3 Polytopes with Nonobtuse Dihedral Angles; 6.4 The Developing Map; 6.5 Polygon Groups 
520 1 |a "The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--Jacket 
546 |a English. 
588 |a Description based on print version record. 
650 7 |a Coxeter-Gruppe  |2 gnd 
650 7 |a Geometric group theory.  |2 fast  |0 (OCoLC)fst00940833 
650 7 |a Coxeter groups.  |2 fast  |0 (OCoLC)fst00882060 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 6 |a Theorie geometrique des groupes. 
650 6 |a Groupes de Coxeter. 
650 0 |a Geometric group theory. 
650 0 |a Coxeter groups. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30688/ 
945 |a Project MUSE - Custom Collection