|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
musev2_30686 |
003 |
MdBmJHUP |
005 |
20230905043238.0 |
006 |
m o d |
007 |
cr||||||||nn|n |
008 |
120424t20122013nju o 00 0 eng d |
020 |
|
|
|a 9781400845644
|
020 |
|
|
|z 9780691155920
|
020 |
|
|
|z 9780691155913
|
040 |
|
|
|a MdBmJHUP
|c MdBmJHUP
|
100 |
1 |
|
|a Yuan, Xinyi,
|d 1981-
|
245 |
1 |
4 |
|a The Gross-Zagier Formula on Shimura Curves :
|b (AMS-184) /
|c Xinyi Yuan, Shou-wu Zhang, and Wei Zhang.
|
264 |
|
1 |
|a Princeton :
|b Princeton University Press,
|c 2012, 2013.
|
264 |
|
3 |
|a Baltimore, Md. :
|b Project MUSE,
|c 0000
|
264 |
|
4 |
|c ©2012, 2013.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Annals of mathematics studies ;
|v no. 184
|
505 |
0 |
0 |
|t Frontmatter --
|t Contents --
|t Preface --
|t Chapter One. Introduction and Statement of Main Results --
|t Chapter Two. Weil Representation and Waldspurger Formula --
|t Chapter Three. Mordell-Weil Groups and Generating Series --
|t Chapter Four. Trace of the Generating Series --
|t Chapter Five. Assumptions on the Schwartz Function --
|t Chapter Six. Derivative of the Analytic Kernel --
|t Chapter Seven. Decomposition of the Geometric Kernel --
|t Chapter Eight. Local Heights of CM Points --
|t Bibliography --
|t Index.
|
520 |
|
|
|a This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves.
|
546 |
|
|
|a In English.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
7 |
|a Shimura varieties.
|2 fast
|0 (OCoLC)fst01116007
|
650 |
|
7 |
|a Quaternions.
|2 fast
|0 (OCoLC)fst01085499
|
650 |
|
7 |
|a Automorphic forms.
|2 fast
|0 (OCoLC)fst00824129
|
650 |
|
7 |
|a Arithmetical algebraic geometry.
|2 fast
|0 (OCoLC)fst00814526
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
6 |
|a Quaternions.
|
650 |
|
6 |
|a Formes automorphes.
|
650 |
|
6 |
|a Geometrie algebrique arithmetique.
|
650 |
|
6 |
|a Varietes de Shimura.
|
650 |
|
0 |
|a Quaternions.
|
650 |
|
0 |
|a Automorphic forms.
|
650 |
|
0 |
|a Arithmetical algebraic geometry.
|
650 |
|
0 |
|a Shimura varieties.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
700 |
1 |
|
|a Zhang, Wei,
|d 1981-
|
700 |
1 |
|
|a Zhang, Shouwu.
|
710 |
2 |
|
|a Project Muse.
|e distributor
|
830 |
|
0 |
|a Book collections on Project MUSE.
|
856 |
4 |
0 |
|z Texto completo
|u https://projectmuse.uam.elogim.com/book/30686/
|
945 |
|
|
|a Project MUSE - Custom Collection
|