Cargando…

The Decomposition of Global Conformal Invariants (AM-182) /

This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. Thes...

Descripción completa

Detalles Bibliográficos
Autor principal: Alexakis, Spyros, 1978-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2012.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30682
003 MdBmJHUP
005 20230905043238.0
006 m o d
007 cr||||||||nn|n
008 120319s2012 nju o 00 0 eng d
010 |z  2011037622 
020 |a 9781400842728 
020 |z 9780691153483 
020 |z 9780691153476 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Alexakis, Spyros,  |d 1978- 
245 1 4 |a The Decomposition of Global Conformal Invariants (AM-182) /   |c Spyros Alexakis. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2012. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2012. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 182 
505 0 |6 880-01  |a Cover Page; Title Page; Copyright Page; Table of Contents; Acknowledgments; 1. Introduction; 1.1 Related Questions; 1.2 Outline of this Work; 2. An Iterative Decomposition of Global Conformal Invariants: The First Step; 2.1 Introduction; 2.2 Conventions, Background, and the Super Divergence Formula; 2.3 From the super Divergence Formula for Ig(o) Back to P(g): The Two Main Claims of this Work; 2.4 Proposition 2.7 in the Easy Case s = s; 2.5 Proposition 2.7 in the Hard Case s <s; 3. The Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition; 3.1 Introduction. 
505 0 |a 3.2 The Locally Conformally Invariant Piece in P(g): A Proof of Lemmas 3.1, 3.2, and 3.33.3 Proof of Lemma 3.4: The Divergence Piece in P(g); 4. A Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition; 4.1 Introduction; 4.2 The fundamental Proposition 4.13; 4.3 Proof of Proposition 4.13: Set up an Induction and Reduce the Inductive Step to Lemmas 4.16, 4.19, 4.24; 4.4 Proof that Proposition 4.13 Follows from Lemmas 4.16, 4.19, and 4.24 (and Lemmas 4.22 and 4.23); 5. The Inductive Step of the Fundamental Proposition: The Simpler Cases; 5.1 Introduction. 
505 0 |a 5.2 Notation and Preliminary Results5.3 An analysis of Curvtrans[Lg]; 5.4 A study of LC[Lg] and W[Lg] in (5.16): Computations and cancellations; 6. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part I; 6.1 Introduction; 6.2 The First Ingredient in the Grand Conclusion; 6.3 The Second Part of the Grand Conclusion: A study of Image 1,ss Ou+1 [Lg]=0; 6.4 The Grand Conclusion and the Proof of Lemma 4.24; 7. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part II; 7.1 Introduction: A sketch of the Strategy; 7.2 The proof of Lemma 4.24 in Case B; A. Appendix. 
505 0 |a A.1 Some Technical ToolsA. 2 Some Postponed Short Proofs; A.3 Proof of Lemmas 4.22 and 4.23; Bibliography; Index of Authors and Terms; Index of Symbols. 
520 |a This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Decomposition (Mathematics)  |2 fast  |0 (OCoLC)fst00889127 
650 7 |a Conformal invariants.  |2 fast  |0 (OCoLC)fst00875030 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Numerical Analysis.  |2 bisacsh 
650 6 |a Decomposition (Mathematiques) 
650 6 |a Invariants conformes. 
650 0 |a Decomposition (Mathematics) 
650 0 |a Conformal invariants. 
655 0 |a Electronic book. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Introduction --  |g 1.1.  |t Related questions --  |g 1.2.  |t Outline of this work --  |g 2.  |t Iterative Decomposition of Global Conformal Invariants: The First Step --  |g 2.1.  |t Introduction --  |g 2.2.  |t Conventions, background, and the super divergence formula --  |g 2.3.  |t From the super divergence formula for Ig (o) back to P(g): The two main claims of this work --  |g 2.4.  |t Proposition 2.7 in the easy case s = σ --  |g 2.5.  |t Proposition 2.7 in the hard case s <σ --  |g 3.  |t Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition --  |g 3.1.  |t Introduction --  |g 3.2.  |t locally conformally invariant piece in P(g): A proof of Lemmas 3.1, 3.2, and 3.3 --  |g 3.3.  |t Proof of Lemma 3.4: The divergence piece in P(g) --  |g 4.  |t Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition --  |g 4.1.  |t Introduction --  |g 4.2.  |t fundamental Proposition 4.13 --  |g 4.3.  |t Proof of Proposition 4.13: Set up an induction and reduce the inductive step to Lemmas 4.16, 4.19, 4.24 --  |g 4.4.  |t Proof that Proposition 4.13 follows from Lemmas 4.16, 4.19, and 4.24 (and Lemmas 4.22 and 4.23) --  |g 5.  |t Inductive Step of the Fundamental Proposition: The Simpler Cases --  |g 5.1.  |t Introduction --  |g 5.2.  |t Notation and preliminary results --  |g 5.3.  |t analysis of CurvTrans[Lg] --  |g 5.4.  |t study of LC[Lg] and W[Lg] in (5.16): Computations and cancellations --  |g 6.  |t Inductive Step of the Fundamental Proposition: The Hard Cases, Part I --  |g 6.1.  |t Introduction --  |g 6.2.  |t first ingredient in the grand conclusion --  |g 6.3.  |t second part of the grand conclusion: A study of Image 1, β o u + 1[Lg] =0 --  |g 6.4.  |t grand conclusion and the proof of Lemma 4.24 --  |g 7.  |t Inductive Step of the Fundamental Proposition: The Hard Cases, Part II --  |g 7.1.  |t Introduction: A sketch of the strategy --  |g 7.2.  |t proof of Lemma 4.24 in Case B --  |g A.  |t Appendix --  |g A.1.  |t Some technical tools --  |g A.2.  |t Some postponed short proofs --  |g A.3.  |t Proof of Lemmas 4.22 and 4.23. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30682/ 
945 |a Project MUSE - Custom Collection