Cargando…

Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143

Annotation

Detalles Bibliográficos
Autores principales: Voevodsky, Vladimir (Autor), Friedlander, Eric M. (Autor), Suslin, Andrei (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Ewing : California Princeton Fulfillment Services [distributor] April 2000
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30638
003 MdBmJHUP
005 20230905043234.0
006 m o d
007 cr||||||||nn|n
008 980831e20000404nju o 00 0 eng d
020 |a 9781400837120 
020 |z 9780691048154 
020 |z 9780691048147 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Voevodsky, Vladimir,  |e author. 
245 1 0 |a Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143 
264 1 |a Ewing :  |b California Princeton Fulfillment Services [distributor]  |c April 2000 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©April 2000 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of Mathematics Studies  |v vol. 143 
505 0 |a Relative cycles and chow sheaves / Andrei Suslin and Vladimir Voevodsky -- Cohomological theory of presheaves with transfers / Vladimir Voevodsky -- Bivariant cycle cohomology / Eric M. Friedlander and Vladimir Voevodsky -- Triangulated categories of motives over a field / Vladimir Voevodsky -- Higher Chow groups and etale cohomology / Andrei A. Suslin. 
520 8 |a Annotation  |b The original goal that ultimately led to this volume was the construction of "motivic cohomology theory," whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated "Milnor Conjecture" by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co- )homology. 
521 |a College Audience  |b Princeton University Press. 
546 |a English. 
588 |a Description based on print version record. 
650 7 |a Faisceaux, Theorie des.  |2 ram 
650 7 |a Homologie.  |2 ram 
650 1 7 |a K-theorie.  |2 gtt 
650 1 7 |a Cohomologie.  |2 gtt 
650 7 |a Homologietheorie  |2 gnd 
650 7 |a Algebraische Geometrie  |2 gnd 
650 7 |a Homology theory.  |2 fast  |0 (OCoLC)fst00959720 
650 7 |a Algebraic cycles.  |2 fast  |0 (OCoLC)fst00804930 
650 7 |a Sheaf theory.  |2 fast  |0 (OCoLC)fst01115421 
650 7 |a 31.51 algebraic geometry.  |0 (NL-LeOCL)077602048  |2 bcl 
650 6 |a Cycles algebriques. 
650 6 |a Theorie des faisceaux. 
650 6 |a Homologie. 
650 0 |a Sheaf theory. 
650 0 |a Homology theory. 
650 0 |a Algebraic cycles. 
655 7 |a Electronic books.   |2 local 
700 1 |a Friedlander, Eric M.,  |e author. 
700 1 |a Suslin, Andrei,  |e author. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30638/ 
945 |a Project MUSE - Custom Collection