Cargando…

Mumford-Tate Groups and Domains : Their Geometry and Arithmetic (AM-183) /

Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results,...

Descripción completa

Detalles Bibliográficos
Autores principales: Green, Mark (Autor), Kerr, Matt (Autor), Griffiths, Phillip A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, [2012]
Edición:Course book.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30506
003 MdBmJHUP
005 20230905043226.0
006 m o d
007 cr||||||||nn|n
008 151027s2012 nyu o 00 0 eng d
020 |a 9781400842735 
020 |z 9780691154244 
020 |z 9780691154251 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Green, Mark,  |e author. 
245 1 0 |a Mumford-Tate Groups and Domains :   |b Their Geometry and Arithmetic (AM-183) /   |c Mark Green, Phillip A. Griffiths, Matt Kerr. 
250 |a Course book. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c [2012] 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©[2012] 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of Mathematics Studies,  |x 0066-2313 ;  |v 183 
505 0 0 |t Frontmatter --  |t Contents --  |t Introduction --  |t Chapter I. Mumford-Tate Groups --  |t Chapter II. Period Domains and Mumford-Tate Domains --  |t Chapter III. The Mumford-Tate Group of a Variation of Hodge Structure --  |t Chapter IV. Hodge Representations and Hodge Domains --  |t Chapter V. Hodge Structures With Complex Multiplication --  |t Chapter VI. Arithmetic Aspects of Mumford-Tate Domains --  |t Chapter VII. Classification of Mumford-Tate Subdomains --  |t Chapter VIII. Arithmetic of Period Maps of Geometric Origin --  |t Index. 
520 |a Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Mumford-Tate groups.  |2 fast  |0 (OCoLC)fst01894669 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 0 |a Mumford-Tate groups. 
655 7 |a Electronic books.   |2 local 
700 1 |a Kerr, Matt,  |e author. 
700 1 |a Griffiths, Phillip A.,  |e author. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30506/ 
945 |a Project MUSE - Custom Collection